Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAlphaAlign: Incentivizing Safety Alignment with Extremely Simplified Reinforcement Learning
Large language models (LLMs), despite possessing latent safety understanding from their vast pretraining data, remain vulnerable to generating harmful content and exhibit issues such as over-refusal and utility degradation after safety alignment. Current safety alignment methods often result in superficial refusal shortcuts or rely on intensive supervision for reasoning-based approaches, failing to fully leverage the model's intrinsic safety self-awareness. We propose AlphaAlign, a simple yet effective pure reinforcement learning (RL) framework with verifiable safety reward designed to incentivize this latent safety awareness through proactive safety reasoning.} AlphaAlign employs a dual-reward system: a verifiable safety reward encourages correctly formatted and explicitly justified refusals for harmful queries while penalizing over-refusals, and a normalized helpfulness reward guides high-quality responses to benign inputs. This allows the model to develop proactive safety reasoning capabilities without depending on supervised safety-specific reasoning data. AlphaAlign demonstrates three key advantages: (1) Simplicity and efficiency, requiring only binary prompt safety labels and minimal RL steps for substantial improvements. (2) Breaking the safety-utility trade-off, by enhancing refusal of harmful content and reducing over-refusals, while simultaneously maintaining or even improving general task performance and robustness to unseen jailbreaks. (3) Deep alignment, fostering proactive safety reasoning that generates explicit safety rationales rather than relying on shallow refusal patterns.
VLMGuard-R1: Proactive Safety Alignment for VLMs via Reasoning-Driven Prompt Optimization
Aligning Vision-Language Models (VLMs) with safety standards is essential to mitigate risks arising from their multimodal complexity, where integrating vision and language unveils subtle threats beyond the reach of conventional safeguards. Inspired by the insight that reasoning across modalities is key to preempting intricate vulnerabilities, we propose a novel direction for VLM safety: multimodal reasoning-driven prompt rewriting. To this end, we introduce VLMGuard-R1, a proactive framework that refines user inputs through a reasoning-guided rewriter, dynamically interpreting text-image interactions to deliver refined prompts that bolster safety across diverse VLM architectures without altering their core parameters. To achieve this, we devise a three-stage reasoning pipeline to synthesize a dataset that trains the rewriter to infer subtle threats, enabling tailored, actionable responses over generic refusals. Extensive experiments across three benchmarks with five VLMs reveal that VLMGuard-R1 outperforms four baselines. In particular, VLMGuard-R1 achieves a remarkable 43.59\% increase in average safety across five models on the SIUO benchmark.
RSafe: Incentivizing proactive reasoning to build robust and adaptive LLM safeguards
Large Language Models (LLMs) continue to exhibit vulnerabilities despite deliberate safety alignment efforts, posing significant risks to users and society. To safeguard against the risk of policy-violating content, system-level moderation via external guard models-designed to monitor LLM inputs and outputs and block potentially harmful content-has emerged as a prevalent mitigation strategy. Existing approaches of training guard models rely heavily on extensive human curated datasets and struggle with out-of-distribution threats, such as emerging harmful categories or jailbreak attacks. To address these limitations, we propose RSafe, an adaptive reasoning-based safeguard that conducts guided safety reasoning to provide robust protection within the scope of specified safety policies. RSafe operates in two stages: 1) guided reasoning, where it analyzes safety risks of input content through policy-guided step-by-step reasoning, and 2) reinforced alignment, where rule-based RL optimizes its reasoning paths to align with accurate safety prediction. This two-stage training paradigm enables RSafe to internalize safety principles to generalize safety protection capability over unseen or adversarial safety violation scenarios. During inference, RSafe accepts user-specified safety policies to provide enhanced safeguards tailored to specific safety requirements.
ToolSafe: Enhancing Tool Invocation Safety of LLM-based agents via Proactive Step-level Guardrail and Feedback
While LLM-based agents can interact with environments via invoking external tools, their expanded capabilities also amplify security risks. Monitoring step-level tool invocation behaviors in real time and proactively intervening before unsafe execution is critical for agent deployment, yet remains under-explored. In this work, we first construct TS-Bench, a novel benchmark for step-level tool invocation safety detection in LLM agents. We then develop a guardrail model, TS-Guard, using multi-task reinforcement learning. The model proactively detects unsafe tool invocation actions before execution by reasoning over the interaction history. It assesses request harmfulness and action-attack correlations, producing interpretable and generalizable safety judgments and feedback. Furthermore, we introduce TS-Flow, a guardrail-feedback-driven reasoning framework for LLM agents, which reduces harmful tool invocations of ReAct-style agents by 65 percent on average and improves benign task completion by approximately 10 percent under prompt injection attacks.
ProGuard: Towards Proactive Multimodal Safeguard
The rapid evolution of generative models has led to a continuous emergence of multimodal safety risks, exposing the limitations of existing defense methods. To address these challenges, we propose ProGuard, a vision-language proactive guard that identifies and describes out-of-distribution (OOD) safety risks without the need for model adjustments required by traditional reactive approaches. We first construct a modality-balanced dataset of 87K samples, each annotated with both binary safety labels and risk categories under a hierarchical multimodal safety taxonomy, effectively mitigating modality bias and ensuring consistent moderation across text, image, and text-image inputs. Based on this dataset, we train our vision-language base model purely through reinforcement learning (RL) to achieve efficient and concise reasoning. To approximate proactive safety scenarios in a controlled setting, we further introduce an OOD safety category inference task and augment the RL objective with a synonym-bank-based similarity reward that encourages the model to generate concise descriptions for unseen unsafe categories. Experimental results show that ProGuard achieves performance comparable to closed-source large models on binary safety classification, substantially outperforms existing open-source guard models on unsafe content categorization. Most notably, ProGuard delivers a strong proactive moderation ability, improving OOD risk detection by 52.6% and OOD risk description by 64.8%.
How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.
Towards Safe Reasoning in Large Reasoning Models via Corrective Intervention
Although Large Reasoning Models (LRMs) have progressed in solving complex problems, their chain-of-thought (CoT) reasoning often contains harmful content that can persist even when the final responses appear safe. We show that this issue still remains in existing methods which overlook the unique significance of safe reasoning, undermining their trustworthiness and posing potential risks in applications if unsafe reasoning is accessible for and exploited by malicious users. We therefore shift our focus to aligning the safety of reasoning itself in this paper and explore process supervision as the solution. However, simply rewarding safe reasoning proves inadequate due to low rollout diversity and limited training signals. To tackle this challenge, we first delve into the characteristics of safe reasoning and uncover several critical insights that 1) safe reasoning is often consolidated by a few critical steps of safety triggers; 2) compliance cues strongly correlate with unsafe continuations; and 3) corrective interventions reliably steer unsafe trajectories towards safer traces. Motivated by these, we propose Intervened Preference Optimization (IPO), an alignment method that enforces safe reasoning by substituting compliance steps with safety triggers and constructing pairs for preference learning with strong signals. Experiments on jailbreak and adversarial safety benchmarks demonstrate that IPO remarkably improves overall safety regarding both reasoning and responses, outperforming SFT-based and RL-based baselines with a relative reduction of over 30% in harmfulness, while preserving excellent performance across diverse reasoning tasks. The results highlight the importance of explicit alignment for reasoning and provide a practical path to safer LRMs.
When Models Outthink Their Safety: Mitigating Self-Jailbreak in Large Reasoning Models with Chain-of-Guardrails
Large Reasoning Models (LRMs) demonstrate remarkable capabilities on complex reasoning tasks but remain vulnerable to severe safety risks, including harmful content generation and jailbreak attacks. Existing mitigation strategies rely on injecting heuristic safety signals during training, which often suppress reasoning ability and fail to resolve the safety-reasoning trade-off. To systematically investigate this issue, we analyze the reasoning trajectories of diverse LRMs and uncover a phenomenon we term Self-Jailbreak, where models override their own risk assessments and justify responding to unsafe prompts. This finding reveals that LRMs inherently possess the ability to reject unsafe queries, but this ability is compromised, resulting in harmful outputs. Building on these insights, we propose the Chain-of-Guardrail (CoG), a training framework that recomposes or backtracks unsafe reasoning steps, steering the model back onto safe trajectories while preserving valid reasoning chains. Extensive experiments across multiple reasoning and safety benchmarks demonstrate that CoG substantially improves the safety of current LRMs while preserving comparable reasoning ability, significantly outperforming prior methods that suffer from severe safety-reasoning trade-offs.
SafeRBench: A Comprehensive Benchmark for Safety Assessment in Large Reasoning Models
Large Reasoning Models (LRMs) improve answer quality through explicit chain-of-thought, yet this very capability introduces new safety risks: harmful content can be subtly injected, surface gradually, or be justified by misleading rationales within the reasoning trace. Existing safety evaluations, however, primarily focus on output-level judgments and rarely capture these dynamic risks along the reasoning process. In this paper, we present SafeRBench, the first benchmark that assesses LRM safety end-to-end -- from inputs and intermediate reasoning to final outputs. (1) Input Characterization: We pioneer the incorporation of risk categories and levels into input design, explicitly accounting for affected groups and severity, and thereby establish a balanced prompt suite reflecting diverse harm gradients. (2) Fine-Grained Output Analysis: We introduce a micro-thought chunking mechanism to segment long reasoning traces into semantically coherent units, enabling fine-grained evaluation across ten safety dimensions. (3) Human Safety Alignment: We validate LLM-based evaluations against human annotations specifically designed to capture safety judgments. Evaluations on 19 LRMs demonstrate that SafeRBench enables detailed, multidimensional safety assessment, offering insights into risks and protective mechanisms from multiple perspectives.
Reasoning While Asking: Transforming Reasoning Large Language Models from Passive Solvers to Proactive Inquirers
Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a blind self-thinking paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: https://github.com/SUAT-AIRI/Proactive-Interactive-R1
SaFeR-VLM: Toward Safety-aware Fine-grained Reasoning in Multimodal Models
Multimodal Large Reasoning Models (MLRMs) demonstrate impressive cross-modal reasoning but often amplify safety risks under adversarial or unsafe prompts, a phenomenon we call the Reasoning Tax. Existing defenses mainly act at the output level and do not constrain the reasoning process, leaving models exposed to implicit risks. In this paper, we propose SaFeR-VLM, a safety-aligned reinforcement learning framework that embeds safety directly into multimodal reasoning. The framework integrates four components: (I) QI-Safe-10K, a curated dataset emphasizing safety-critical and reasoning-sensitive cases; (II) safety-aware rollout, where unsafe generations undergo reflection and correction instead of being discarded; (III) structured reward modeling with multi-dimensional weighted criteria and explicit penalties for hallucinations and contradictions; and (IV) GRPO optimization, which reinforces both safe and corrected trajectories. This unified design shifts safety from a passive safeguard to an active driver of reasoning, enabling scalable and generalizable safety-aware reasoning. SaFeR-VLM further demonstrates robustness against both explicit and implicit risks, supporting dynamic and interpretable safety decisions beyond surface-level filtering. SaFeR-VLM-3B achieves average performance 70.13 and 78.97 on safety and helpfulness across six benchmarks, surpassing both same-scale and >10times larger models such as Skywork-R1V3-38B, Qwen2.5VL-72B, and GLM4.5V-106B. Remarkably, SaFeR-VLM-7B benefits from its increased scale to surpass GPT-5-mini and Gemini-2.5-Flash by 6.47 and 16.76 points respectively on safety metrics, achieving this improvement without any degradation in helpfulness performance. Our codes are available at https://github.com/HarveyYi/SaFeR-VLM.
Beyond SFT: Reinforcement Learning for Safer Large Reasoning Models with Better Reasoning Ability
Large reasoning models (LRMs) extend large language models by generating explicit chain-of-thought (CoT) reasoning, significantly improving mathematical and logical problem solving. However, this explicit reasoning process also introduces new safety risks, as unsafe behaviors often emerge within intermediate reasoning trajectories, even when final answers appear harmless. Existing safety alignment approaches primarily rely on supervised fine-tuning (SFT) over safety-oriented long CoT datasets. While intuitive, we find that SFT produces inconsistent safety improvements, degrades reasoning ability, and generalizes poorly across model families. These limitations suggest that purely supervised approaches are insufficient for robust safety alignment in LRMs. To address this, we investigate reinforcement learning (RL) as a complementary optimization framework for LRM safety training. Unlike SFT, RL directly optimizes model policies with reward feedback, enabling more adaptive and stable alignment. Extensive experiments across multiple model families and benchmarks show that RL achieves stronger and more consistent safety gains while maintaining reasoning competence. Further analysis of reflection dynamics and token-level entropy reveals that RL suppresses unsafe exploratory reasoning while preserving reflective depth, leading to safer and more reliable reasoning processes.
Towards Safety Reasoning in LLMs: AI-agentic Deliberation for Policy-embedded CoT Data Creation
Safety reasoning is a recent paradigm where LLMs reason over safety policies before generating responses, thereby mitigating limitations in existing safety measures such as over-refusal and jailbreak vulnerabilities. However, implementing this paradigm is challenging due to the resource-intensive process of creating high-quality policy-embedded chain-of-thought (CoT) datasets while ensuring reasoning remains accurate and free from hallucinations or policy conflicts. To tackle this, we propose AIDSAFE: Agentic Iterative Deliberation for Safety Reasoning, a novel data generation recipe that leverages multi-agent deliberation to iteratively expand reasoning on safety policies. A data refiner stage in AIDSAFE ensures high-quality outputs by eliminating repetitive, redundant, and deceptive thoughts. AIDSAFE-generated CoTs provide a strong foundation for supervised fine-tuning (SFT)-based safety training. Additionally, to address the need of preference data in alignment stages, such as DPO training, we introduce a supplemental recipe that uses belief augmentation to create distinct selected and rejected CoT samples. Our evaluations demonstrate that AIDSAFE-generated CoTs achieve superior policy adherence and reasoning quality. Consequently, we show that fine-tuning open-source LLMs on these CoTs can significantly improve safety generalization and jailbreak robustness while maintaining acceptable utility and over-refusal accuracy. AIDSAFE-generated CoT datasets can be found here: https://huggingface.co/datasets/AmazonScience/AIDSAFE
Pro2Guard: Proactive Runtime Enforcement of LLM Agent Safety via Probabilistic Model Checking
Large Language Model (LLM) agents demonstrate strong autonomy, but their stochastic behavior introduces unpredictable safety risks. Existing rule-based enforcement systems, such as AgentSpec, are reactive, intervening only when unsafe behavior is imminent or has occurred, lacking foresight for long-horizon dependencies. To overcome these limitations, we present a proactive runtime enforcement framework for LLM agents. The framework abstracts agent behaviors into symbolic states and learns a Discrete-Time Markov Chain (DTMC) from execution traces. At runtime, it predicts the probability of leading to undesired behaviors and intervenes before violations occur when the estimated risk exceeds a user-defined threshold. Designed to provide PAC-correctness guarantee, the framework achieves statistically reliable enforcement of agent safety. We evaluate the framework across two safety-critical domains: autonomous vehicles and embodied agents. It proactively enforces safety and maintains high task performance, outperforming existing methods.
SafeWork-R1: Coevolving Safety and Intelligence under the AI-45^{circ} Law
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of 46.54% over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.
THINKSAFE: Self-Generated Safety Alignment for Reasoning Models
Large reasoning models (LRMs) achieve remarkable performance by leveraging reinforcement learning (RL) on reasoning tasks to generate long chain-of-thought (CoT) reasoning. However, this over-optimization often prioritizes compliance, making models vulnerable to harmful prompts. To mitigate this safety degradation, recent approaches rely on external teacher distillation, yet this introduces a distributional discrepancy that degrades native reasoning. We propose ThinkSafe, a self-generated alignment framework that restores safety alignment without external teachers. Our key insight is that while compliance suppresses safety mechanisms, models often retain latent knowledge to identify harm. ThinkSafe unlocks this via lightweight refusal steering, guiding the model to generate in-distribution safety reasoning traces. Fine-tuning on these self-generated responses effectively realigns the model while minimizing distribution shift. Experiments on DeepSeek-R1-Distill and Qwen3 show ThinkSafe significantly improves safety while preserving reasoning proficiency. Notably, it achieves superior safety and comparable reasoning to GRPO, with significantly reduced computational cost. Code, models, and datasets are available at https://github.com/seanie12/ThinkSafe.git.
R1-ACT: Efficient Reasoning Model Safety Alignment by Activating Safety Knowledge
Although large reasoning models (LRMs) have demonstrated impressive capabilities on complex tasks, recent studies reveal that these models frequently fulfill harmful user instructions, raising significant safety concerns. In this paper, we investigate the underlying cause of LRM safety risks and find that models already possess sufficient safety knowledge but fail to activate it during reasoning. Based on this insight, we propose R1-Act, a simple and efficient post-training method that explicitly triggers safety knowledge through a structured reasoning process. R1-Act achieves strong safety improvements while preserving reasoning performance, outperforming prior alignment methods. Notably, it requires only 1,000 training examples and 90 minutes of training on a single RTX A6000 GPU. Extensive experiments across multiple LRM backbones and sizes demonstrate the robustness, scalability, and practical efficiency of our approach.
The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1
The rapid development of large reasoning models, such as OpenAI-o3 and DeepSeek-R1, has led to significant improvements in complex reasoning over non-reasoning large language models~(LLMs). However, their enhanced capabilities, combined with the open-source access of models like DeepSeek-R1, raise serious safety concerns, particularly regarding their potential for misuse. In this work, we present a comprehensive safety assessment of these reasoning models, leveraging established safety benchmarks to evaluate their compliance with safety regulations. Furthermore, we investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications. Through our multi-faceted analysis, we uncover four key findings: (1) There is a significant safety gap between the open-source R1 models and the o3-mini model, on both safety benchmark and attack, suggesting more safety effort on R1 is needed. (2) The distilled reasoning model shows poorer safety performance compared to its safety-aligned base models. (3) The stronger the model's reasoning ability, the greater the potential harm it may cause when answering unsafe questions. (4) The thinking process in R1 models pose greater safety concerns than their final answers. Our study provides insights into the security implications of reasoning models and highlights the need for further advancements in R1 models' safety to close the gap.
Safety Through Reasoning: An Empirical Study of Reasoning Guardrail Models
Reasoning-based language models have demonstrated strong performance across various domains, with the most notable gains seen in mathematical and coding tasks. Recent research has shown that reasoning also offers significant benefits for LLM safety and guardrail applications. In this work, we conduct a comprehensive analysis of training reasoning-based guardrail models for content moderation, with an emphasis on generalization to custom safety policies at inference time. Our study focuses on two key dimensions: data efficiency and inference efficiency. On the data front, we find that reasoning-based models exhibit strong sample efficiency, achieving competitive performance with significantly fewer training examples than their non-reasoning counterparts. This unlocks the potential to repurpose the remaining data for mining high-value, difficult samples that further enhance model performance. On the inference side, we evaluate practical trade-offs by introducing reasoning budgets, examining the impact of reasoning length on latency and accuracy, and exploring dual-mode training to allow runtime control over reasoning behavior. Our findings will provide practical insights for researchers and developers to effectively and efficiently train and deploy reasoning-based guardrails models in real-world systems.
Safety in Large Reasoning Models: A Survey
Large Reasoning Models (LRMs) have exhibited extraordinary prowess in tasks like mathematics and coding, leveraging their advanced reasoning capabilities. Nevertheless, as these capabilities progress, significant concerns regarding their vulnerabilities and safety have arisen, which can pose challenges to their deployment and application in real-world settings. This paper presents a comprehensive survey of LRMs, meticulously exploring and summarizing the newly emerged safety risks, attacks, and defense strategies. By organizing these elements into a detailed taxonomy, this work aims to offer a clear and structured understanding of the current safety landscape of LRMs, facilitating future research and development to enhance the security and reliability of these powerful models.
Refusal Falls off a Cliff: How Safety Alignment Fails in Reasoning?
Large reasoning models (LRMs) with multi-step reasoning capabilities have shown remarkable problem-solving abilities, yet they exhibit concerning safety vulnerabilities that remain poorly understood. In this work, we investigate why safety alignment fails in reasoning models through a mechanistic interpretability lens. Using a linear probing approach to trace refusal intentions across token positions, we discover a striking phenomenon termed as refusal cliff: many poorly-aligned reasoning models correctly identify harmful prompts and maintain strong refusal intentions during their thinking process, but experience a sharp drop in refusal scores at the final tokens before output generation. This suggests that these models are not inherently unsafe; rather, their refusal intentions are systematically suppressed. Through causal intervention analysis, we identify a sparse set of attention heads that negatively contribute to refusal behavior. Ablating just 3\% of these heads can reduce attack success rates below 10\%. Building on these mechanistic insights, we propose Cliff-as-a-Judge, a novel data selection method that identifies training examples exhibiting the largest refusal cliff to efficiently repair reasoning models' safety alignment. This approach achieves comparable safety improvements using only 1.7\% of the vanilla safety training data, demonstrating a less-is-more effect in safety alignment.
SafeChain: Safety of Language Models with Long Chain-of-Thought Reasoning Capabilities
Emerging large reasoning models (LRMs), such as DeepSeek-R1 models, leverage long chain-of-thought (CoT) reasoning to generate structured intermediate steps, enhancing their reasoning capabilities. However, long CoT does not inherently guarantee safe outputs, potentially leading to harmful consequences such as the introduction of security vulnerabilities in code or the spread of misinformation. Current research on large language model (LLM) safety usually focuses on short-answer responses, overlooking the long CoT style outputs of LRMs. To bridge this gap, we conduct a systematic study of LRM safety. First, we investigate safety evaluators calibrated against human annotations. Using our newly developed metrics, we thoroughly assess the safety of 12 state-of-the-art LRMs on StrongReject and WildJailbreak datasets. Our results show that LRMs are not safe compared to their reasoning advance. Further, we perform a fine-grained analysis of the reasoning trace and final answer. We find that three decoding strategies-ZeroThink, LessThink, and MoreThink-can improve model safety without additional training. However, these strategies either use constrained reasoning traces or incur high inference costs. To better strengthen LRM safety, we introduce SafeChain, the first-of-its-kind safety training dataset in CoT style. We fine-tune two LRMs with SafeChain, showing that it not only enhances model safety but also preserves performance across 6 reasoning benchmarks.
Simulating the Unseen: Crash Prediction Must Learn from What Did Not Happen
Traffic safety science has long been hindered by a fundamental data paradox: the crashes we most wish to prevent are precisely those events we rarely observe. Existing crash-frequency models and surrogate safety metrics rely heavily on sparse, noisy, and under-reported records, while even sophisticated, high-fidelity simulations undersample the long-tailed situations that trigger catastrophic outcomes such as fatalities. We argue that the path to achieving Vision Zero, i.e., the complete elimination of traffic fatalities and severe injuries, requires a paradigm shift from traditional crash-only learning to a new form of counterfactual safety learning: reasoning not only about what happened, but also about the vast set of plausible yet perilous scenarios that could have happened under slightly different circumstances. To operationalize this shift, our proposed agenda bridges macro to micro. Guided by crash-rate priors, generative scene engines, diverse driver models, and causal learning, near-miss events are synthesized and explained. A crash-focused digital twin testbed links micro scenes to macro patterns, while a multi-objective validator ensures that simulations maintain statistical realism. This pipeline transforms sparse crash data into rich signals for crash prediction, enabling the stress-testing of vehicles, roads, and policies before deployment. By learning from crashes that almost happened, we can shift traffic safety from reactive forensics to proactive prevention, advancing Vision Zero.
A Benchmark for Evaluating Outcome-Driven Constraint Violations in Autonomous AI Agents
As autonomous AI agents are increasingly deployed in high-stakes environments, ensuring their safety and alignment with human values has become a paramount concern. Current safety benchmarks primarily evaluate whether agents refuse explicitly harmful instructions or whether they can maintain procedural compliance in complex tasks. However, there is a lack of benchmarks designed to capture emergent forms of outcome-driven constraint violations, which arise when agents pursue goal optimization under strong performance incentives while deprioritizing ethical, legal, or safety constraints over multiple steps in realistic production settings. To address this gap, we introduce a new benchmark comprising 40 distinct scenarios. Each scenario presents a task that requires multi-step actions, and the agent's performance is tied to a specific Key Performance Indicator (KPI). Each scenario features Mandated (instruction-commanded) and Incentivized (KPI-pressure-driven) variations to distinguish between obedience and emergent misalignment. Across 12 state-of-the-art large language models, we observe outcome-driven constraint violations ranging from 1.3% to 71.4%, with 9 of the 12 evaluated models exhibiting misalignment rates between 30% and 50%. Strikingly, we find that superior reasoning capability does not inherently ensure safety; for instance, Gemini-3-Pro-Preview, one of the most capable models evaluated, exhibits the highest violation rate at 71.4%, frequently escalating to severe misconduct to satisfy KPIs. Furthermore, we observe significant "deliberative misalignment", where the models that power the agents recognize their actions as unethical during separate evaluation. These results emphasize the critical need for more realistic agentic-safety training before deployment to mitigate their risks in the real world.
OpenAI o1 System Card
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models
Traditional autonomous driving systems often struggle to connect high-level reasoning with low-level control, leading to suboptimal and sometimes unsafe behaviors. Recent advances in multimodal large language models (MLLMs), which process both visual and textual data, offer an opportunity to unify perception and reasoning. However, effectively embedding precise safety knowledge into MLLMs for autonomous driving remains a significant challenge. To address this, we propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge. First, we introduce a Position-Dependent Cross-Entropy (PDCE) loss to improve low-level control signal predictions when values are represented as text. Second, to explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic (e.g., "red light implies stop") and embeds them into a probabilistic graphical model (e.g., Markov Logic Network) to verify predicted actions using recognized environmental attributes. Additionally, our Multimodal Retrieval-Augmented Generation (RAG) model leverages video, control signals, and environmental attributes to learn from past driving experiences. Integrating PDCE, MLN, and Multimodal RAG, SafeAuto outperforms existing baselines across multiple datasets, enabling more accurate, reliable, and safer autonomous driving. The code is available at https://github.com/AI-secure/SafeAuto.
SafeGRPO: Self-Rewarded Multimodal Safety Alignment via Rule-Governed Policy Optimization
Multimodal large language models (MLLMs) have demonstrated impressive reasoning and instruction-following capabilities, yet their expanded modality space introduces new compositional safety risks that emerge from complex text-image interactions. Such cross-modal couplings can produce unsafe semantics even when individual inputs are benign, exposing the fragile safety awareness of current MLLMs. While recent works enhance safety by guiding models to reason about potential risks, unregulated reasoning traces may compromise alignment; although Group Relative Policy Optimization (GRPO) offers self-rewarded refinement without human supervision, it lacks verifiable signals for reasoning safety. To address this, we propose SafeGRPO a self-rewarded multimodal safety alignment framework that integrates rule-governed reward construction into GRPO, enabling interpretable and verifiable optimization of reasoning safety. Built upon the constructed SafeTag-VL-3K dataset with explicit visual, textual, and combined safety tags, SafeGRPO performs step-guided safety thinking to enforce structured reasoning and behavior alignment, substantially improving multimodal safety awareness, compositional robustness, and reasoning stability across diverse benchmarks without sacrificing general capabilities.
STAR-1: Safer Alignment of Reasoning LLMs with 1K Data
This paper introduces STAR-1, a high-quality, just-1k-scale safety dataset specifically designed for large reasoning models (LRMs) like DeepSeek-R1. Built on three core principles -- diversity, deliberative reasoning, and rigorous filtering -- STAR-1 aims to address the critical needs for safety alignment in LRMs. Specifically, we begin by integrating existing open-source safety datasets from diverse sources. Then, we curate safety policies to generate policy-grounded deliberative reasoning samples. Lastly, we apply a GPT-4o-based safety scoring system to select training examples aligned with best practices. Experimental results show that fine-tuning LRMs with STAR-1 leads to an average 40% improvement in safety performance across four benchmarks, while only incurring a marginal decrease (e.g., an average of 1.1%) in reasoning ability measured across five reasoning tasks. Extensive ablation studies further validate the importance of our design principles in constructing STAR-1 and analyze its efficacy across both LRMs and traditional LLMs. Our project page is https://ucsc-vlaa.github.io/STAR-1.
Think in Safety: Unveiling and Mitigating Safety Alignment Collapse in Multimodal Large Reasoning Model
The rapid development of Multimodal Large Reasoning Models (MLRMs) has demonstrated broad application potential, yet their safety and reliability remain critical concerns that require systematic exploration. To address this gap, we conduct a comprehensive and systematic safety evaluation of 11 MLRMs across 5 benchmarks and unveil prevalent safety degradation phenomena in most advanced models. Moreover, our analysis reveals distinct safety patterns across different benchmarks: significant safety degradation is observed across jailbreak robustness benchmarks, whereas safety-awareness benchmarks demonstrate less pronounced degradation. In particular, the long thought process in some scenarios even enhances safety performance. Therefore, it is a potential approach to address safety issues in MLRMs by leveraging the intrinsic reasoning capabilities of the model to detect unsafe intent. To operationalize this insight, we construct a multimodal tuning dataset that incorporates a safety-oriented thought process. Experimental results from fine-tuning existing MLRMs with this dataset effectively enhances the safety on both jailbreak robustness and safety-awareness benchmarks. This study provides a new perspective for developing safe MLRMs. Our dataset is available at https://github.com/xinyuelou/Think-in-Safety.
SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering, leading to remarkable improvements in complex tasks. However, they pose great safety risks against harmful queries and adversarial attacks. While recent mainstream safety efforts on LRMs, supervised fine-tuning (SFT), improve safety performance, we find that SFT-aligned models struggle to generalize to unseen jailbreak prompts. After thorough investigation of LRMs' generation, we identify a safety aha moment that can activate safety reasoning and lead to a safe response. This aha moment typically appears in the `key sentence', which follows models' query understanding process and can indicate whether the model will proceed safely. Based on these insights, we propose SafeKey, including two complementary objectives to better activate the safety aha moment in the key sentence: (1) a Dual-Path Safety Head to enhance the safety signal in the model's internal representations before the key sentence, and (2) a Query-Mask Modeling objective to improve the models' attention on its query understanding, which has important safety hints. Experiments across multiple safety benchmarks demonstrate that our methods significantly improve safety generalization to a wide range of jailbreak attacks and out-of-distribution harmful prompts, lowering the average harmfulness rate by 9.6\%, while maintaining general abilities. Our analysis reveals how SafeKey enhances safety by reshaping internal attention and improving the quality of hidden representations.
GSPR: Aligning LLM Safeguards as Generalizable Safety Policy Reasoners
As large language models (LLMs) are increasingly integrated into numerous applications across various domains, LLMs' safety becomes a critical concern for both application developers and intended users. Currently, great efforts have been made to develop safety benchmarks with fine-grained taxonomies. However, these benchmarks' taxonomies are disparate with different safety policies. Thus, existing safeguards trained on these benchmarks are either coarse-grained to only distinguish between safe and unsafe, or constrained by the narrow risk taxonomies of a single benchmark. To leverage these fine-grained safety taxonomies across multiple safety benchmarks, in this paper, we propose GSPR, a Generalizable Safety Policy Reasoner to identify unsafe input prompts and LLMs' outputs with violated safety taxonomies through Group Relative Policy Optimization (GRPO). Unlike prior safeguards which only cover a fixed set of risk factors, our GSPR incentivizes its reasoning capability with varied safety taxonomies through our careful cold-start strategy and reward design. Consequently, our GSPR can be trained across multiple safety benchmarks with distinct taxonomies and naturally exhibits powerful generalization ability. We conduct extensive experiments to show that our GSPR significantly improves existing safety guardrails' reasoning capabilities for both safety and category prediction tasks. Moreover, our GSPR not only demonstrates powerful safety generalization abilities but also achieves the least inference token costs with explanations.
H-CoT: Hijacking the Chain-of-Thought Safety Reasoning Mechanism to Jailbreak Large Reasoning Models, Including OpenAI o1/o3, DeepSeek-R1, and Gemini 2.0 Flash Thinking
Large Reasoning Models (LRMs) have recently extended their powerful reasoning capabilities to safety checks-using chain-of-thought reasoning to decide whether a request should be answered. While this new approach offers a promising route for balancing model utility and safety, its robustness remains underexplored. To address this gap, we introduce Malicious-Educator, a benchmark that disguises extremely dangerous or malicious requests beneath seemingly legitimate educational prompts. Our experiments reveal severe security flaws in popular commercial-grade LRMs, including OpenAI o1/o3, DeepSeek-R1, and Gemini 2.0 Flash Thinking. For instance, although OpenAI's o1 model initially maintains a high refusal rate of about 98%, subsequent model updates significantly compromise its safety; and attackers can easily extract criminal strategies from DeepSeek-R1 and Gemini 2.0 Flash Thinking without any additional tricks. To further highlight these vulnerabilities, we propose Hijacking Chain-of-Thought (H-CoT), a universal and transferable attack method that leverages the model's own displayed intermediate reasoning to jailbreak its safety reasoning mechanism. Under H-CoT, refusal rates sharply decline-dropping from 98% to below 2%-and, in some instances, even transform initially cautious tones into ones that are willing to provide harmful content. We hope these findings underscore the urgent need for more robust safety mechanisms to preserve the benefits of advanced reasoning capabilities without compromising ethical standards.
YuFeng-XGuard: A Reasoning-Centric, Interpretable, and Flexible Guardrail Model for Large Language Models
As large language models (LLMs) are increasingly deployed in real-world applications, safety guardrails are required to go beyond coarse-grained filtering and support fine-grained, interpretable, and adaptable risk assessment. However, existing solutions often rely on rapid classification schemes or post-hoc rules, resulting in limited transparency, inflexible policies, or prohibitive inference costs. To this end, we present YuFeng-XGuard, a reasoning-centric guardrail model family designed to perform multi-dimensional risk perception for LLM interactions. Instead of producing opaque binary judgments, YuFeng-XGuard generates structured risk predictions, including explicit risk categories and configurable confidence scores, accompanied by natural language explanations that expose the underlying reasoning process. This formulation enables safety decisions that are both actionable and interpretable. To balance decision latency and explanatory depth, we adopt a tiered inference paradigm that performs an initial risk decision based on the first decoded token, while preserving ondemand explanatory reasoning when required. In addition, we introduce a dynamic policy mechanism that decouples risk perception from policy enforcement, allowing safety policies to be adjusted without model retraining. Extensive experiments on a diverse set of public safety benchmarks demonstrate that YuFeng-XGuard achieves stateof-the-art performance while maintaining strong efficiency-efficacy trade-offs. We release YuFeng-XGuard as an open model family, including both a full-capacity variant and a lightweight version, to support a wide range of deployment scenarios.
ReasoningShield: Content Safety Detection over Reasoning Traces of Large Reasoning Models
Large Reasoning Models (LRMs) are transforming the AI landscape with advanced reasoning capabilities. While the generated reasoning traces enhance model transparency, they can still contain unsafe content, even when the final answer appears safe. Existing moderation tools, primarily designed for question-answer (QA) pairs, are empirically ineffective at detecting hidden risks embedded in reasoning traces. After identifying the key challenges, we formally define the question-thought (QT) moderation task and propose ReasoningShield, the first safety detection model tailored to identify potential risks in the reasoning trace before reaching the final answer. To construct the model, we synthesize a high-quality reasoning safety detection dataset comprising over 8,000 question-thought pairs spanning ten risk categories and three safety levels. Our dataset construction process incorporates a comprehensive human-AI collaborative annotation pipeline, which achieves over 93% annotation accuracy while significantly reducing human costs. On a diverse set of in-distribution and out-of-distribution benchmarks, ReasoningShield outperforms mainstream content safety moderation models in identifying risks within reasoning traces, with an average F1 score exceeding 0.92. Notably, despite being trained on our QT dataset only, ReasoningShield also demonstrates competitive performance in detecting unsafe question-answer pairs on traditional benchmarks, rivaling baselines trained on 10 times larger datasets and base models, which strongly validates the quality of our dataset. Furthermore, ReasoningShield is built upon compact 1B/3B base models to facilitate lightweight deployment and provides human-friendly risk analysis by default. To foster future research, we publicly release all the resources.
RealSafe-R1: Safety-Aligned DeepSeek-R1 without Compromising Reasoning Capability
Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have been rapidly progressing and achieving breakthrough performance on complex reasoning tasks such as mathematics and coding. However, the open-source R1 models have raised safety concerns in wide applications, such as the tendency to comply with malicious queries, which greatly impacts the utility of these powerful models in their applications. In this paper, we introduce RealSafe-R1 as safety-aligned versions of DeepSeek-R1 distilled models. To train these models, we construct a dataset of 15k safety-aware reasoning trajectories generated by DeepSeek-R1, under explicit instructions for expected refusal behavior. Both quantitative experiments and qualitative case studies demonstrate the models' improvements, which are shown in their safety guardrails against both harmful queries and jailbreak attacks. Importantly, unlike prior safety alignment efforts that often compromise reasoning performance, our method preserves the models' reasoning capabilities by maintaining the training data within the original distribution of generation. Model weights of RealSafe-R1 are open-source at https://huggingface.co/RealSafe.
UnsafeChain: Enhancing Reasoning Model Safety via Hard Cases
As large reasoning models (LRMs) grow more capable, chain-of-thought (CoT) reasoning introduces new safety challenges. Existing SFT-based safety alignment studies dominantly focused on filtering prompts with safe, high-quality responses, while overlooking hard prompts that always elicit harmful outputs. To fill this gap, we introduce UnsafeChain, a safety alignment dataset constructed from hard prompts with diverse sources, where unsafe completions are identified and explicitly corrected into safe responses. By exposing models to unsafe behaviors and guiding their correction, UnsafeChain enhances safety while preserving general reasoning ability. We fine-tune three LRMs on UnsafeChain and compare them against recent SafeChain and STAR-1 across six out-of-distribution and five in-distribution benchmarks. UnsafeChain consistently outperforms prior datasets, with even a 1K subset matching or surpassing baseline performance, demonstrating the effectiveness and generalizability of correction-based supervision. We release our dataset and code at https://github.com/mbzuai-nlp/UnsafeChain
ERPO: Advancing Safety Alignment via Ex-Ante Reasoning Preference Optimization
Recent advancements in large language models (LLMs) have accelerated progress toward artificial general intelligence, yet their potential to generate harmful content poses critical safety challenges. Existing alignment methods often struggle to cover diverse safety scenarios and remain vulnerable to adversarial attacks. In this work, we propose Ex-Ante Reasoning Preference Optimization (ERPO), a novel safety alignment framework that equips LLMs with explicit preemptive reasoning through Chain-of-Thought and provides clear evidence for safety judgments by embedding predefined safety rules. Specifically, our approach consists of three stages: first, equipping the model with Ex-Ante reasoning through supervised fine-tuning (SFT) using a constructed reasoning module; second, enhancing safety, usefulness, and efficiency via Direct Preference Optimization (DPO); and third, mitigating inference latency with a length-controlled iterative preference optimization strategy. Experiments on multiple open-source LLMs demonstrate that ERPO significantly enhances safety performance while maintaining response efficiency.
Safety is Not Only About Refusal: Reasoning-Enhanced Fine-tuning for Interpretable LLM Safety
Large Language Models (LLMs) are vulnerable to jailbreak attacks that exploit weaknesses in traditional safety alignment, which often relies on rigid refusal heuristics or representation engineering to block harmful outputs. While they are effective for direct adversarial attacks, they fall short of broader safety challenges requiring nuanced, context-aware decision-making. To address this, we propose Reasoning-enhanced Finetuning for interpretable LLM Safety (Rational), a novel framework that trains models to engage in explicit safe reasoning before response. Fine-tuned models leverage the extensive pretraining knowledge in self-generated reasoning to bootstrap their own safety through structured reasoning, internalizing context-sensitive decision-making. Our findings suggest that safety extends beyond refusal, requiring context awareness for more robust, interpretable, and adaptive responses. Reasoning is not only a core capability of LLMs but also a fundamental mechanism for LLM safety. Rational employs reasoning-enhanced fine-tuning, allowing it to reject harmful prompts while providing meaningful and context-aware responses in complex scenarios.
STAIR: Improving Safety Alignment with Introspective Reasoning
Ensuring the safety and harmlessness of Large Language Models (LLMs) has become equally critical as their performance in applications. However, existing safety alignment methods typically suffer from safety-performance trade-offs and the susceptibility to jailbreak attacks, primarily due to their reliance on direct refusals for malicious queries. In this paper, we propose STAIR, a novel framework that integrates SafeTy Alignment with Itrospective Reasoning. We enable LLMs to identify safety risks through step-by-step analysis by self-improving chain-of-thought (CoT) reasoning with safety awareness. STAIR first equips the model with a structured reasoning capability and then advances safety alignment via iterative preference optimization on step-level reasoning data generated using our newly proposed Safety-Informed Monte Carlo Tree Search (SI-MCTS). We further train a process reward model on this data to guide test-time searches for improved responses. Extensive experiments show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies. With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks. Relevant resources in this work are available at https://github.com/thu-ml/STAIR.
Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin. Data and Models are released under: https://dripnowhy.github.io/MIS/{https://dripnowhy.github.io/MIS/}
SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues
Malicious attackers can exploit large language models (LLMs) by engaging them in multi-turn dialogues to achieve harmful objectives, posing significant safety risks to society. To address this challenge, we propose a novel defense mechanism: SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues (STREAM). STREAM defends LLMs against multi-turn attacks while preserving their functional capabilities. Our approach involves constructing a human-annotated dataset, the Safety Reasoning Multi-turn Dialogues dataset, which is used to fine-tune a plug-and-play safety reasoning moderator. This model is designed to identify malicious intent hidden within multi-turn conversations and alert the target LLM of potential risks. We evaluate STREAM across multiple LLMs against prevalent multi-turn attack strategies. Experimental results demonstrate that our method significantly outperforms existing defense techniques, reducing the Attack Success Rate (ASR) by 51.2%, all while maintaining comparable LLM capability.
Mitigating Safety Tax via Distribution-Grounded Refinement in Large Reasoning Models
Safety alignment incurs safety tax that perturbs a large reasoning model's (LRM) general reasoning ability. Existing datasets used for safety alignment for an LRM are usually constructed by distilling safety reasoning traces and answers from an external LRM or human labeler. However, such reasoning traces and answers exhibit a distributional gap with the target LRM that needs alignment, and we conjecture such distributional gap is the culprit leading to significant degradation of reasoning ability of the target LRM. Driven by this hypothesis, we propose a safety alignment dataset construction method, dubbed DGR. DGR transforms and refines an existing out-of-distributional safety reasoning dataset to be aligned with the target's LLM inner distribution. Experimental results demonstrate that i) DGR effectively mitigates the safety tax while maintaining safety performance across all baselines, i.e., achieving +30.2\% on DirectRefusal and +21.2\% on R1-ACT improvement in average reasoning accuracy compared to Vanilla SFT; ii) the degree of reasoning degradation correlates with the extent of distribution shift, suggesting that bridging this gap is central to preserving capabilities. Furthermore, we find that safety alignment in LRMs may primarily function as a mechanism to activate latent knowledge, as a mere 10 samples are sufficient for activating effective refusal behaviors. These findings not only emphasize the importance of distributional consistency but also provide insights into the activation mechanism of safety in reasoning models.
IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems.
R^textbf{2AI}: Towards Resistant and Resilient AI in an Evolving World
In this position paper, we address the persistent gap between rapidly growing AI capabilities and lagging safety progress. Existing paradigms divide into ``Make AI Safe'', which applies post-hoc alignment and guardrails but remains brittle and reactive, and ``Make Safe AI'', which emphasizes intrinsic safety but struggles to address unforeseen risks in open-ended environments. We therefore propose safe-by-coevolution as a new formulation of the ``Make Safe AI'' paradigm, inspired by biological immunity, in which safety becomes a dynamic, adversarial, and ongoing learning process. To operationalize this vision, we introduce R^2AI -- Resistant and Resilient AI -- as a practical framework that unites resistance against known threats with resilience to unforeseen risks. R^2AI integrates fast and slow safe models, adversarial simulation and verification through a safety wind tunnel, and continual feedback loops that guide safety and capability to coevolve. We argue that this framework offers a scalable and proactive path to maintain continual safety in dynamic environments, addressing both near-term vulnerabilities and long-term existential risks as AI advances toward AGI and ASI.
EASE: Practical and Efficient Safety Alignment for Small Language Models
Small language models (SLMs) are increasingly deployed on edge devices, making their safety alignment crucial yet challenging. Current shallow alignment methods that rely on direct refusal of malicious queries fail to provide robust protection, particularly against adversarial jailbreaks. While deliberative safety reasoning alignment offers deeper alignment for defending against sophisticated attacks, effectively implanting such reasoning capability in SLMs with limited capabilities remains an open challenge. Moreover, safety reasoning incurs significant computational overhead as models apply reasoning to nearly all queries, making it impractical for resource-constrained edge deployment scenarios that demand rapid responses. We propose EASE, a novel framework that enables practical and Efficient safety Alignment for Small languagE models. Our approach first identifies the optimal safety reasoning teacher that can effectively distill safety reasoning capabilities to SLMs. We then align models to selectively activate safety reasoning for dangerous adversarial jailbreak queries while providing direct responses to straightforward malicious queries and general helpful tasks. This selective mechanism enables small models to maintain robust safety guarantees against sophisticated attacks while preserving computational efficiency for benign interactions. Experimental results demonstrate that EASE reduces jailbreak attack success rates by up to 17% compared to shallow alignment methods while reducing inference overhead by up to 90% compared to deliberative safety reasoning alignment, making it practical for SLMs real-world edge deployments.
Bag of Tricks for Subverting Reasoning-based Safety Guardrails
Recent reasoning-based safety guardrails for Large Reasoning Models (LRMs), such as deliberative alignment, have shown strong defense against jailbreak attacks. By leveraging LRMs' reasoning ability, these guardrails help the models to assess the safety of user inputs before generating final responses. The powerful reasoning ability can analyze the intention of the input query and will refuse to assist once it detects the harmful intent hidden by the jailbreak methods. Such guardrails have shown a significant boost in defense, such as the near-perfect refusal rates on the open-source gpt-oss series. Unfortunately, we find that these powerful reasoning-based guardrails can be extremely vulnerable to subtle manipulation of the input prompts, and once hijacked, can lead to even more harmful results. Specifically, we first uncover a surprisingly fragile aspect of these guardrails: simply adding a few template tokens to the input prompt can successfully bypass the seemingly powerful guardrails and lead to explicit and harmful responses. To explore further, we introduce a bag of jailbreak methods that subvert the reasoning-based guardrails. Our attacks span white-, gray-, and black-box settings and range from effortless template manipulations to fully automated optimization. Along with the potential for scalable implementation, these methods also achieve alarmingly high attack success rates (e.g., exceeding 90% across 5 different benchmarks on gpt-oss series on both local host models and online API services). Evaluations across various leading open-source LRMs confirm that these vulnerabilities are systemic, underscoring the urgent need for stronger alignment techniques for open-sourced LRMs to prevent malicious misuse. Code is open-sourced at https://chenxshuo.github.io/bag-of-tricks.
ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning
Large Language Models (LLMs) have demonstrated remarkable generative capabilities. However, their susceptibility to misuse has raised significant safety concerns. While post-training safety alignment methods have been widely adopted, LLMs remain vulnerable to malicious instructions that can bypass safety constraints. Recent efforts have introduced inference-time safety reasoning (system-2 alignment), where LLMs conduct a reasoning process to perform safety verification before final response. We show, however, that these checks are driven by ad-hoc reasoning that diverges from the structured human process, where they first discern a user's true intent, then evaluate the associated risk based on the true intent. Consequently, these defenses remain vulnerable to sophisticated jailbreak prompts that cloak harmful goals in seemingly benign language. To build secure and safe LLMs, we propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one. At inference, ARMOR (1) detects likely jailbreak strategies, (2) extracts the user's core intent while discarding deceptive instructions, and (3) applies a policy-grounded safety analysis to the purified request. ARMOR is evaluated on adaptive jailbreak attacks and multiple safety benchmarks, and a test-time scaling is conducted to further improve its performance. Results demonstrate that ARMOR significantly enhances the robustness against state-of-the-art adaptive jailbreak attacks and outperforms recent reasoning-based aligned models across various safety benchmarks.
Holistic Safety and Responsibility Evaluations of Advanced AI Models
Safety and responsibility evaluations of advanced AI models are a critical but developing field of research and practice. In the development of Google DeepMind's advanced AI models, we innovated on and applied a broad set of approaches to safety evaluation. In this report, we summarise and share elements of our evolving approach as well as lessons learned for a broad audience. Key lessons learned include: First, theoretical underpinnings and frameworks are invaluable to organise the breadth of risk domains, modalities, forms, metrics, and goals. Second, theory and practice of safety evaluation development each benefit from collaboration to clarify goals, methods and challenges, and facilitate the transfer of insights between different stakeholders and disciplines. Third, similar key methods, lessons, and institutions apply across the range of concerns in responsibility and safety - including established and emerging harms. For this reason it is important that a wide range of actors working on safety evaluation and safety research communities work together to develop, refine and implement novel evaluation approaches and best practices, rather than operating in silos. The report concludes with outlining the clear need to rapidly advance the science of evaluations, to integrate new evaluations into the development and governance of AI, to establish scientifically-grounded norms and standards, and to promote a robust evaluation ecosystem.
Llama-3.1-FoundationAI-SecurityLLM-Reasoning-8B Technical Report
We present Foundation-Sec-8B-Reasoning, the first open-source native reasoning model for cybersecurity. Built upon our previously released Foundation-Sec-8B base model (derived from Llama-3.1-8B-Base), the model is trained through a two-stage process combining supervised fine-tuning (SFT) and reinforcement learning from verifiable rewards (RLVR). Our training leverages proprietary reasoning data spanning cybersecurity analysis, instruction-following, and mathematical reasoning. Evaluation across 10 cybersecurity benchmarks and 10 general-purpose benchmarks demonstrates performance competitive with significantly larger models on cybersecurity tasks while maintaining strong general capabilities. The model shows effective generalization on multi-hop reasoning tasks and strong safety performance when deployed with appropriate system prompts and guardrails. This work demonstrates that domain-specialized reasoning models can achieve strong performance on specialized tasks while maintaining broad general capabilities. We release the model publicly at https://huggingface.co/fdtn-ai/Foundation-Sec-8B-Reasoning.
Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking
The reasoning abilities of Large Language Models (LLMs) have demonstrated remarkable advancement and exceptional performance across diverse domains. However, leveraging these reasoning capabilities to enhance LLM safety against adversarial attacks and jailbreak queries remains largely unexplored. To bridge this gap, we propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates safety reflections of queries and responses into LLMs' generation process, unlocking a safety-aware reasoning mechanism. This approach enables self-evaluation at each reasoning step to create safety pivot tokens as indicators of the response's safety status. Furthermore, in order to improve the learning efficiency of pivot token prediction, we propose Contrastive Pivot Optimization(CPO), which enhances the model's ability to perceive the safety status of dialogues. Through this mechanism, LLMs dynamically adjust their response strategies during reasoning, significantly enhancing their defense capabilities against jailbreak attacks. Extensive experimental results demonstrate that R2D effectively mitigates various attacks and improves overall safety, highlighting the substantial potential of safety-aware reasoning in strengthening LLMs' robustness against jailbreaks.
Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications such as "digital assistants, autonomous customer service, and decision-support systems", where their ability to "interact in multi-turn, tool-augmented environments" makes them indispensable. However, ensuring the safety of these agents remains a significant challenge due to the diverse and complex risks arising from dynamic user interactions, external tool usage, and the potential for unintended harmful behaviors. To address this critical issue, we propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation. Concretely, 1) we introduce an open and extensible threat model, OTS, which formalizes how unsafe behaviors emerge from the interplay of user instructions, interaction contexts, and agent actions. This enables precise modeling of safety risks across diverse scenarios. 2) we develop a fully automated data generation pipeline that simulates unsafe user behaviors, applies self-reflective reasoning to generate safe responses, and constructs a large-scale, diverse, and high-quality safety training dataset-eliminating the need for hazardous real-world data collection. To evaluate the effectiveness of our framework, we design comprehensive experiments on both synthetic and real-world safety benchmarks. Results demonstrate that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks, validating the generalization ability of our learned safety strategies. These results highlight the practical advancement and scalability of AutoSafe in building safer LLM-based agents for real-world deployment. We have released the project page at https://auto-safe.github.io/.
GuardReasoner: Towards Reasoning-based LLM Safeguards
As LLMs increasingly impact safety-critical applications, ensuring their safety using guardrails remains a key challenge. This paper proposes GuardReasoner, a new safeguard for LLMs, by guiding the guard model to learn to reason. Concretely, we first create the GuardReasonerTrain dataset, which consists of 127K samples with 460K detailed reasoning steps. Then, we introduce reasoning SFT to unlock the reasoning capability of guard models. In addition, we present hard sample DPO to further strengthen their reasoning ability. In this manner, GuardReasoner achieves better performance, explainability, and generalizability. Extensive experiments and analyses on 13 benchmarks of 3 guardrail tasks demonstrate its superiority. Remarkably, GuardReasoner 8B surpasses GPT-4o+CoT by 5.74% and LLaMA Guard 3 8B by 20.84% F1 score on average. We release the training data, code, and models with different scales (1B, 3B, 8B) of GuardReasoner : https://github.com/yueliu1999/GuardReasoner/.
Thought Purity: Defense Paradigm For Chain-of-Thought Attack
While reinforcement learning-trained Large Reasoning Models (LRMs, e.g., Deepseek-R1) demonstrate advanced reasoning capabilities in the evolving Large Language Models (LLMs) domain, their susceptibility to security threats remains a critical vulnerability. This weakness is particularly evident in Chain-of-Thought (CoT) generation processes, where adversarial methods like backdoor prompt attacks can systematically subvert the model's core reasoning mechanisms. The emerging Chain-of-Thought Attack (CoTA) reveals this vulnerability through exploiting prompt controllability, simultaneously degrading both CoT safety and task performance with low-cost interventions. To address this compounded security-performance vulnerability, we propose Thought Purity (TP): a defense paradigm that systematically strengthens resistance to malicious content while preserving operational efficacy. Our solution achieves this through three synergistic components: (1) a safety-optimized data processing pipeline (2) reinforcement learning-enhanced rule constraints (3) adaptive monitoring metrics. Our approach establishes the first comprehensive defense mechanism against CoTA vulnerabilities in reinforcement learning-aligned reasoning systems, significantly advancing the security-functionality equilibrium for next-generation AI architectures.
Safety Cases: How to Justify the Safety of Advanced AI Systems
As AI systems become more advanced, companies and regulators will make difficult decisions about whether it is safe to train and deploy them. To prepare for these decisions, we investigate how developers could make a 'safety case,' which is a structured rationale that AI systems are unlikely to cause a catastrophe. We propose a framework for organizing a safety case and discuss four categories of arguments to justify safety: total inability to cause a catastrophe, sufficiently strong control measures, trustworthiness despite capability to cause harm, and -- if AI systems become much more powerful -- deference to credible AI advisors. We evaluate concrete examples of arguments in each category and outline how arguments could be combined to justify that AI systems are safe to deploy.
Towards Understanding the Cognitive Habits of Large Reasoning Models
Large Reasoning Models (LRMs), which autonomously produce a reasoning Chain of Thought (CoT) before producing final responses, offer a promising approach to interpreting and monitoring model behaviors. Inspired by the observation that certain CoT patterns -- e.g., ``Wait, did I miss anything?'' -- consistently emerge across tasks, we explore whether LRMs exhibit human-like cognitive habits. Building on Habits of Mind, a well-established framework of cognitive habits associated with successful human problem-solving, we introduce CogTest, a principled benchmark designed to evaluate LRMs' cognitive habits. CogTest includes 16 cognitive habits, each instantiated with 25 diverse tasks, and employs an evidence-first extraction method to ensure reliable habit identification. With CogTest, we conduct a comprehensive evaluation of 16 widely used LLMs (13 LRMs and 3 non-reasoning ones). Our findings reveal that LRMs, unlike conventional LLMs, not only exhibit human-like habits but also adaptively deploy them according to different tasks. Finer-grained analyses further uncover patterns of similarity and difference in LRMs' cognitive habit profiles, particularly certain inter-family similarity (e.g., Qwen-3 models and DeepSeek-R1). Extending the study to safety-related tasks, we observe that certain habits, such as Taking Responsible Risks, are strongly associated with the generation of harmful responses. These findings suggest that studying persistent behavioral patterns in LRMs' CoTs is a valuable step toward deeper understanding of LLM misbehavior. The code is available at: https://github.com/jianshuod/CogTest.
A Safety Framework for Critical Systems Utilising Deep Neural Networks
Increasingly sophisticated mathematical modelling processes from Machine Learning are being used to analyse complex data. However, the performance and explainability of these models within practical critical systems requires a rigorous and continuous verification of their safe utilisation. Working towards addressing this challenge, this paper presents a principled novel safety argument framework for critical systems that utilise deep neural networks. The approach allows various forms of predictions, e.g., future reliability of passing some demands, or confidence on a required reliability level. It is supported by a Bayesian analysis using operational data and the recent verification and validation techniques for deep learning. The prediction is conservative -- it starts with partial prior knowledge obtained from lifecycle activities and then determines the worst-case prediction. Open challenges are also identified.
AccidentBench: Benchmarking Multimodal Understanding and Reasoning in Vehicle Accidents and Beyond
Rapid advances in multimodal models demand benchmarks that rigorously evaluate understanding and reasoning in safety-critical, dynamic real-world settings. We present AccidentBench, a large-scale benchmark that combines vehicle accident scenarios with Beyond domains, safety-critical settings in air and water that emphasize spatial and temporal reasoning (e.g., navigation, orientation, multi-vehicle motion). The benchmark contains approximately 2000 videos and over 19000 human-annotated question--answer pairs spanning multiple video lengths (short/medium/long) and difficulty levels (easy/medium/hard). Tasks systematically probe core capabilities: temporal, spatial, and intent understanding and reasoning. By unifying accident-centric traffic scenes with broader safety-critical scenarios in air and water, AccidentBench offers a comprehensive, physically grounded testbed for evaluating models under real-world variability. Evaluations of state-of-the-art models (e.g., Gemini-2.5 Pro and GPT-5) show that even the strongest models achieve only about 18% accuracy on the hardest tasks and longest videos, revealing substantial gaps in real-world temporal, spatial, and intent reasoning. AccidentBench is designed to expose these critical gaps and drive the development of multimodal models that are safer, more robust, and better aligned with real-world safety-critical challenges. The code and dataset are available at: https://github.com/SafeRL-Lab/AccidentBench
GuardReasoner-VL: Safeguarding VLMs via Reinforced Reasoning
To enhance the safety of VLMs, this paper introduces a novel reasoning-based VLM guard model dubbed GuardReasoner-VL. The core idea is to incentivize the guard model to deliberatively reason before making moderation decisions via online RL. First, we construct GuardReasoner-VLTrain, a reasoning corpus with 123K samples and 631K reasoning steps, spanning text, image, and text-image inputs. Then, based on it, we cold-start our model's reasoning ability via SFT. In addition, we further enhance reasoning regarding moderation through online RL. Concretely, to enhance diversity and difficulty of samples, we conduct rejection sampling followed by data augmentation via the proposed safety-aware data concatenation. Besides, we use a dynamic clipping parameter to encourage exploration in early stages and exploitation in later stages. To balance performance and token efficiency, we design a length-aware safety reward that integrates accuracy, format, and token cost. Extensive experiments demonstrate the superiority of our model. Remarkably, it surpasses the runner-up by 19.27% F1 score on average. We release data, code, and models (3B/7B) of GuardReasoner-VL at https://github.com/yueliu1999/GuardReasoner-VL/
Safety Tax: Safety Alignment Makes Your Large Reasoning Models Less Reasonable
Safety alignment is an important procedure before the official deployment of a Large Language Model (LLM). While safety alignment has been extensively studied for LLM, there is still a large research gap for Large Reasoning Models (LRMs) that equip with improved reasoning capability. We in this paper systematically examine a simplified pipeline for producing safety aligned LRMs. With our evaluation of various LRMs, we deliver two main findings: i) Safety alignment can be done upon the LRM to restore its safety capability. ii) Safety alignment leads to a degradation of the reasoning capability of LRMs. The two findings show that there exists a trade-off between reasoning and safety capability with the sequential LRM production pipeline. The discovered trade-off, which we name Safety Tax, should shed light on future endeavors of safety research on LRMs. As a by-product, we curate a dataset called DirectRefusal, which might serve as an alternative dataset for safety alignment. Our source code is available at https://github.com/git-disl/Safety-Tax.
Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models
Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.
Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check
As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.
Multimodal Situational Safety
Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: mssbench.github.io.
When Helpers Become Hazards: A Benchmark for Analyzing Multimodal LLM-Powered Safety in Daily Life
As Multimodal Large Language Models (MLLMs) become an indispensable assistant in human life, the unsafe content generated by MLLMs poses a danger to human behavior, perpetually overhanging human society like a sword of Damocles. To investigate and evaluate the safety impact of MLLMs responses on human behavior in daily life, we introduce SaLAD, a multimodal safety benchmark which contains 2,013 real-world image-text samples across 10 common categories, with a balanced design covering both unsafe scenarios and cases of oversensitivity. It emphasizes realistic risk exposure, authentic visual inputs, and fine-grained cross-modal reasoning, ensuring that safety risks cannot be inferred from text alone. We further propose a safety-warning-based evaluation framework that encourages models to provide clear and informative safety warnings, rather than generic refusals. Results on 18 MLLMs demonstrate that the top-performing models achieve a safe response rate of only 57.2% on unsafe queries. Moreover, even popular safety alignment methods limit effectiveness of the models in our scenario, revealing the vulnerabilities of current MLLMs in identifying dangerous behaviors in daily life. Our dataset is available at https://github.com/xinyuelou/SaLAD.
MetaSC: Test-Time Safety Specification Optimization for Language Models
We propose a novel dynamic safety framework that optimizes language model (LM) safety reasoning at inference time without modifying model weights. Building on recent advances in self-critique methods, our approach leverages a meta-critique mechanism that iteratively updates safety prompts-termed specifications-to drive the critique and revision process adaptively. This test-time optimization not only improves performance against adversarial jailbreak requests but also in diverse general safety-related tasks, such as avoiding moral harm or pursuing honest responses. Our empirical evaluations across several language models demonstrate that dynamically optimized safety prompts yield significantly higher safety scores compared to fixed system prompts and static self-critique defenses. Code to be released at https://github.com/vicgalle/meta-self-critique.git .
The Side Effects of Being Smart: Safety Risks in MLLMs' Multi-Image Reasoning
As Multimodal Large Language Models (MLLMs) acquire stronger reasoning capabilities to handle complex, multi-image instructions, this advancement may pose new safety risks. We study this problem by introducing MIR-SafetyBench, the first benchmark focused on multi-image reasoning safety, which consists of 2,676 instances across a taxonomy of 9 multi-image relations. Our extensive evaluations on 19 MLLMs reveal a troubling trend: models with more advanced multi-image reasoning can be more vulnerable on MIR-SafetyBench. Beyond attack success rates, we find that many responses labeled as safe are superficial, often driven by misunderstanding or evasive, non-committal replies. We further observe that unsafe generations exhibit lower attention entropy than safe ones on average. This internal signature suggests a possible risk that models may over-focus on task solving while neglecting safety constraints. Our code and data are available at https://github.com/thu-coai/MIR-SafetyBench.
PSRT: Accelerating LRM-based Guard Models via Prefilled Safe Reasoning Traces
Large Reasoning Models (LRMs) have demonstrated remarkable performance on tasks such as mathematics and code generation. Motivated by these strengths, recent work has empirically demonstrated the effectiveness of LRMs as guard models in improving harmful query detection. However, LRMs typically generate long reasoning traces during inference, causing substantial computational overhead. In this paper, we introduce PSRT, a method that replaces the model's reasoning process with a Prefilled Safe Reasoning Trace, thereby significantly reducing the inference cost of LRMs. Concretely, PSRT prefills "safe reasoning virtual tokens" from a constructed dataset and learns over their continuous embeddings. With the aid of indicator tokens, PSRT enables harmful-query detection in a single forward pass while preserving the classification effectiveness of LRMs. We evaluate PSRT on 7 models, 13 datasets, and 8 jailbreak methods. In terms of efficiency, PSRT completely removes the overhead of generating reasoning tokens during inference. In terms of classification performance, PSRT achieves nearly identical accuracy, with only a minor average F1 drop of 0.015 across 7 models and 5 datasets.
Measuring What Matters: A Framework for Evaluating Safety Risks in Real-World LLM Applications
Most safety testing efforts for large language models (LLMs) today focus on evaluating foundation models. However, there is a growing need to evaluate safety at the application level, as components such as system prompts, retrieval pipelines, and guardrails introduce additional factors that significantly influence the overall safety of LLM applications. In this paper, we introduce a practical framework for evaluating application-level safety in LLM systems, validated through real-world deployment across multiple use cases within our organization. The framework consists of two parts: (1) principles for developing customized safety risk taxonomies, and (2) practices for evaluating safety risks in LLM applications. We illustrate how the proposed framework was applied in our internal pilot, providing a reference point for organizations seeking to scale their safety testing efforts. This work aims to bridge the gap between theoretical concepts in AI safety and the operational realities of safeguarding LLM applications in practice, offering actionable guidance for safe and scalable deployment.
Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
PRISM: Festina Lente Proactivity -- Risk-Sensitive, Uncertainty-Aware Deliberation for Proactive Agents
Proactive agents must decide not only what to say but also whether and when to intervene. Many current systems rely on brittle heuristics or indiscriminate long reasoning, which offers little control over the benefit-burden tradeoff. We formulate the problem as cost-sensitive selective intervention and present PRISM, a novel framework that couples a decision-theoretic gate with a dual-process reasoning architecture. At inference time, the agent intervenes only when a calibrated probability of user acceptance exceeds a threshold derived from asymmetric costs of missed help and false alarms. Inspired by festina lente (Latin: "make haste slowly"), we gate by an acceptance-calibrated, cost-derived threshold and invoke a resource-intensive Slow mode with counterfactual checks only near the decision boundary, concentrating computation on ambiguous and high-stakes cases. Training uses gate-aligned, schema-locked distillation: a teacher running the full PRISM pipeline provides dense, executable supervision on unlabeled interaction traces, while the student learns a response policy that is explicitly decoupled from the intervention gate to enable tunable and auditable control. On ProactiveBench, PRISM reduces false alarms by 22.78% and improves F1 by 20.14% over strong baselines. These results show that principled decision-theoretic gating, paired with selective slow reasoning and aligned distillation, yields proactive agents that are precise, computationally efficient, and controllable. To facilitate reproducibility, we release our code, models, and resources at https://prism-festinalente.github.io/; all experiments use the open-source ProactiveBench benchmark.
An Overview of Catastrophic AI Risks
Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose catastrophic risks. Although numerous risks have been detailed separately, there is a pressing need for a systematic discussion and illustration of the potential dangers to better inform efforts to mitigate them. This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories: malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs; organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents; and rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans. For each category of risk, we describe specific hazards, present illustrative stories, envision ideal scenarios, and propose practical suggestions for mitigating these dangers. Our goal is to foster a comprehensive understanding of these risks and inspire collective and proactive efforts to ensure that AIs are developed and deployed in a safe manner. Ultimately, we hope this will allow us to realize the benefits of this powerful technology while minimizing the potential for catastrophic outcomes.
Reasoning as an Adaptive Defense for Safety
Reasoning methods that adaptively allocate test-time compute have advanced LLM performance on easy to verify domains such as math and code. In this work, we study how to utilize this approach to train models that exhibit a degree of robustness to safety vulnerabilities, and show that doing so can provide benefits. We build a recipe called TARS (Training Adaptive Reasoners for Safety), a reinforcement learning (RL) approach that trains models to reason about safety using chain-of-thought traces and a reward signal that balances safety with task completion. To build TARS, we identify three critical design choices: (1) a "lightweight" warmstart SFT stage, (2) a mix of harmful, harmless, and ambiguous prompts to prevent shortcut behaviors such as too many refusals, and (3) a reward function to prevent degeneration of reasoning capabilities during training. Models trained with TARS exhibit adaptive behaviors by spending more compute on ambiguous queries, leading to better safety-refusal trade-offs. They also internally learn to better distinguish between safe and unsafe prompts and attain greater robustness to both white-box (e.g., GCG) and black-box attacks (e.g., PAIR). Overall, our work provides an effective, open recipe for training LLMs against jailbreaks and harmful requests by reasoning per prompt.
Saffron-1: Towards an Inference Scaling Paradigm for LLM Safety Assurance
Existing safety assurance research has primarily focused on training-phase alignment to instill safe behaviors into LLMs. However, recent studies have exposed these methods' susceptibility to diverse jailbreak attacks. Concurrently, inference scaling has significantly advanced LLM reasoning capabilities but remains unexplored in the context of safety assurance. Addressing this gap, our work pioneers inference scaling for robust and effective LLM safety against emerging threats. We reveal that conventional inference scaling techniques, despite their success in reasoning tasks, perform poorly in safety contexts, even falling short of basic approaches like Best-of-N Sampling. We attribute this inefficiency to a newly identified challenge, the exploration--efficiency dilemma, arising from the high computational overhead associated with frequent process reward model (PRM) evaluations. To overcome this dilemma, we propose SAFFRON, a novel inference scaling paradigm tailored explicitly for safety assurance. Central to our approach is the introduction of a multifurcation reward model (MRM) that significantly reduces the required number of reward model evaluations. To operationalize this paradigm, we further propose: (i) a partial supervision training objective for MRM, (ii) a conservative exploration constraint to prevent out-of-distribution explorations, and (iii) a Trie-based key--value caching strategy that facilitates cache sharing across sequences during tree search. Extensive experiments validate the effectiveness of our method. Additionally, we publicly release our trained multifurcation reward model (Saffron-1) and the accompanying token-level safety reward dataset (Safety4M) to accelerate future research in LLM safety. Our code, model, and data are publicly available at https://github.com/q-rz/saffron , and our project homepage is at https://q-rz.github.io/p/saffron .
SafeScientist: Toward Risk-Aware Scientific Discoveries by LLM Agents
Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce SafeScientist, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose SciSafetyBench, a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35\% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist. red{Warning: this paper contains example data that may be offensive or harmful.}
PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality
Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.
Self-Aware Safety Augmentation: Leveraging Internal Semantic Understanding to Enhance Safety in Vision-Language Models
Large vision-language models (LVLMs) are vulnerable to harmful input compared to their language-only backbones. We investigated this vulnerability by exploring LVLMs internal dynamics, framing their inherent safety understanding in terms of three key capabilities. Specifically, we define these capabilities as safety perception, semantic understanding, and alignment for linguistic expression, and experimentally pinpointed their primary locations within the model architecture. The results indicate that safety perception often emerges before comprehensive semantic understanding, leading to the reduction in safety. Motivated by these findings, we propose Self-Aware Safety Augmentation (SASA), a technique that projects informative semantic representations from intermediate layers onto earlier safety-oriented layers. This approach leverages the model's inherent semantic understanding to enhance safety recognition without fine-tuning. Then, we employ linear probing to articulate the model's internal semantic comprehension to detect the risk before the generation process. Extensive experiments on various datasets and tasks demonstrate that SASA significantly improves the safety of LVLMs, with minimal impact on the utility.
DeepSeek-R1 Thoughtology: Let's <think> about LLM Reasoning
Large Reasoning Models like DeepSeek-R1 mark a fundamental shift in how LLMs approach complex problems. Instead of directly producing an answer for a given input, DeepSeek-R1 creates detailed multi-step reasoning chains, seemingly "thinking" about a problem before providing an answer. This reasoning process is publicly available to the user, creating endless opportunities for studying the reasoning behaviour of the model and opening up the field of Thoughtology. Starting from a taxonomy of DeepSeek-R1's basic building blocks of reasoning, our analyses on DeepSeek-R1 investigate the impact and controllability of thought length, management of long or confusing contexts, cultural and safety concerns, and the status of DeepSeek-R1 vis-\`a-vis cognitive phenomena, such as human-like language processing and world modelling. Our findings paint a nuanced picture. Notably, we show DeepSeek-R1 has a 'sweet spot' of reasoning, where extra inference time can impair model performance. Furthermore, we find a tendency for DeepSeek-R1 to persistently ruminate on previously explored problem formulations, obstructing further exploration. We also note strong safety vulnerabilities of DeepSeek-R1 compared to its non-reasoning counterpart, which can also compromise safety-aligned LLMs.
MortalMATH: Evaluating the Conflict Between Reasoning Objectives and Emergency Contexts
Large Language Models are increasingly optimized for deep reasoning, prioritizing the correct execution of complex tasks over general conversation. We investigate whether this focus on calculation creates a "tunnel vision" that ignores safety in critical situations. We introduce MortalMATH, a benchmark of 150 scenarios where users request algebra help while describing increasingly life-threatening emergencies (e.g., stroke symptoms, freefall). We find a sharp behavioral split: generalist models (like Llama-3.1) successfully refuse the math to address the danger. In contrast, specialized reasoning models (like Qwen-3-32b and GPT-5-nano) often ignore the emergency entirely, maintaining over 95 percent task completion rates while the user describes dying. Furthermore, the computational time required for reasoning introduces dangerous delays: up to 15 seconds before any potential help is offered. These results suggest that training models to relentlessly pursue correct answers may inadvertently unlearn the survival instincts required for safe deployment.
DeepKnown-Guard: A Proprietary Model-Based Safety Response Framework for AI Agents
With the widespread application of Large Language Models (LLMs), their associated security issues have become increasingly prominent, severely constraining their trustworthy deployment in critical domains. This paper proposes a novel safety response framework designed to systematically safeguard LLMs at both the input and output levels. At the input level, the framework employs a supervised fine-tuning-based safety classification model. Through a fine-grained four-tier taxonomy (Safe, Unsafe, Conditionally Safe, Focused Attention), it performs precise risk identification and differentiated handling of user queries, significantly enhancing risk coverage and business scenario adaptability, and achieving a risk recall rate of 99.3%. At the output level, the framework integrates Retrieval-Augmented Generation (RAG) with a specifically fine-tuned interpretation model, ensuring all responses are grounded in a real-time, trustworthy knowledge base. This approach eliminates information fabrication and enables result traceability. Experimental results demonstrate that our proposed safety control model achieves a significantly higher safety score on public safety evaluation benchmarks compared to the baseline model, TinyR1-Safety-8B. Furthermore, on our proprietary high-risk test set, the framework's components attained a perfect 100% safety score, validating their exceptional protective capabilities in complex risk scenarios. This research provides an effective engineering pathway for building high-security, high-trust LLM applications.
Reasoning Hijacking: Subverting LLM Classification via Decision-Criteria Injection
Current LLM safety research predominantly focuses on mitigating Goal Hijacking, preventing attackers from redirecting a model's high-level objective (e.g., from "summarizing emails" to "phishing users"). In this paper, we argue that this perspective is incomplete and highlight a critical vulnerability in Reasoning Alignment. We propose a new adversarial paradigm: Reasoning Hijacking and instantiate it with Criteria Attack, which subverts model judgments by injecting spurious decision criteria without altering the high-level task goal. Unlike Goal Hijacking, which attempts to override the system prompt, Reasoning Hijacking accepts the high-level goal but manipulates the model's decision-making logic by injecting spurious reasoning shortcut. Though extensive experiments on three different tasks (toxic comment, negative review, and spam detection), we demonstrate that even newest models are prone to prioritize injected heuristic shortcuts over rigorous semantic analysis. The results are consistent over different backbones. Crucially, because the model's "intent" remains aligned with the user's instructions, these attacks can bypass defenses designed to detect goal deviation (e.g., SecAlign, StruQ), exposing a fundamental blind spot in the current safety landscape. Data and code are available at https://github.com/Yuan-Hou/criteria_attack
Large Reasoning Models Learn Better Alignment from Flawed Thinking
Large reasoning models (LRMs) "think" by generating structured chain-of-thought (CoT) before producing a final answer, yet they still lack the ability to reason critically about safety alignment and are easily biased when a flawed premise is injected into their thought process. We propose RECAP (Robust Safety Alignment via Counter-Aligned Prefilling), a principled reinforcement learning (RL) method for post-training that explicitly teaches models to override flawed reasoning trajectories and reroute to safe and helpful responses. RECAP trains on a mixture of synthetically generated counter-aligned CoT prefills and standard prompts, requires no additional training cost or modifications beyond vanilla reinforcement learning from human feedback (RLHF), and substantially improves safety and jailbreak robustness, reduces overrefusal, and preserves core reasoning capability -- all while maintaining inference token budget. Extensive analysis shows that RECAP-trained models engage in self-reflection more frequently and remain robust under adaptive attacks, preserving safety even after repeated attempts to override their reasoning.
MobileSafetyBench: Evaluating Safety of Autonomous Agents in Mobile Device Control
Autonomous agents powered by large language models (LLMs) show promising potential in assistive tasks across various domains, including mobile device control. As these agents interact directly with personal information and device settings, ensuring their safe and reliable behavior is crucial to prevent undesirable outcomes. However, no benchmark exists for standardized evaluation of the safety of mobile device-control agents. In this work, we introduce MobileSafetyBench, a benchmark designed to evaluate the safety of device-control agents within a realistic mobile environment based on Android emulators. We develop a diverse set of tasks involving interactions with various mobile applications, including messaging and banking applications. To clearly evaluate safety apart from general capabilities, we design separate tasks measuring safety and tasks evaluating helpfulness. The safety tasks challenge agents with managing potential risks prevalent in daily life and include tests to evaluate robustness against indirect prompt injections. Our experiments demonstrate that while baseline agents, based on state-of-the-art LLMs, perform well in executing helpful tasks, they show poor performance in safety tasks. To mitigate these safety concerns, we propose a prompting method that encourages agents to prioritize safety considerations. While this method shows promise in promoting safer behaviors, there is still considerable room for improvement to fully earn user trust. This highlights the urgent need for continued research to develop more robust safety mechanisms in mobile environments. We open-source our benchmark at: https://mobilesafetybench.github.io/.
Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance
Agents powered by large language models have shown remarkable abilities in solving complex tasks. However, most agent systems remain reactive, limiting their effectiveness in scenarios requiring foresight and autonomous decision-making. In this paper, we tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions. We propose a novel data-driven approach for this problem. Firstly, we collect real-world human activities to generate proactive task predictions. These predictions are then labeled by human annotators as either accepted or rejected. The labeled data is used to train a reward model that simulates human judgment and serves as an automatic evaluator of the proactiveness of LLM agents. Building on this, we develop a comprehensive data generation pipeline to create a diverse dataset, ProactiveBench, containing 6,790 events. Finally, we demonstrate that fine-tuning models with the proposed ProactiveBench can significantly elicit the proactiveness of LLM agents. Experimental results show that our fine-tuned model achieves an F1-Score of 66.47% in proactively offering assistance, outperforming all open-source and close-source models. These results highlight the potential of our method in creating more proactive and effective agent systems, paving the way for future advancements in human-agent collaboration.
Interact, Instruct to Improve: A LLM-Driven Parallel Actor-Reasoner Framework for Enhancing Autonomous Vehicle Interactions
Autonomous Vehicles (AVs) have entered the commercialization stage, but their limited ability to interact and express intentions still poses challenges in interactions with Human-driven Vehicles (HVs). Recent advances in large language models (LLMs) enable bidirectional human-machine communication, but the conflict between slow inference speed and the need for real-time decision-making challenges practical deployment. To address these issues, this paper introduces a parallel Actor-Reasoner framework designed to enable explicit bidirectional AV-HV interactions across multiple scenarios. First, by facilitating interactions between the LLM-driven Reasoner and heterogeneous simulated HVs during training, an interaction memory database, referred to as the Actor, is established. Then, by introducing the memory partition module and the two-layer memory retrieval module, the Actor's ability to handle heterogeneous HVs is significantly enhanced. Ablation studies and comparisons with other decision-making methods demonstrate that the proposed Actor-Reasoner framework significantly improves safety and efficiency. Finally, with the combination of the external Human-Machine Interface (eHMI) information derived from Reasoner's reasoning and the feasible action solutions retrieved from the Actor, the effectiveness of the proposed Actor-Reasoner is confirmed in multi-scenario field interactions. Our code is available at https://github.com/FanGShiYuu/Actor-Reasoner.
What Matters For Safety Alignment?
This paper presents a comprehensive empirical study on the safety alignment capabilities. We evaluate what matters for safety alignment in LLMs and LRMs to provide essential insights for developing more secure and reliable AI systems. We systematically investigate and compare the influence of six critical intrinsic model characteristics and three external attack techniques. Our large-scale evaluation is conducted using 32 recent, popular LLMs and LRMs across thirteen distinct model families, spanning a parameter scale from 3B to 235B. The assessment leverages five established safety datasets and probes model vulnerabilities with 56 jailbreak techniques and four CoT attack strategies, resulting in 4.6M API calls. Our key empirical findings are fourfold. First, we identify the LRMs GPT-OSS-20B, Qwen3-Next-80B-A3B-Thinking, and GPT-OSS-120B as the top-three safest models, which substantiates the significant advantage of integrated reasoning and self-reflection mechanisms for robust safety alignment. Second, post-training and knowledge distillation may lead to a systematic degradation of safety alignment. We thus argue that safety must be treated as an explicit constraint or a core optimization objective during these stages, not merely subordinated to the pursuit of general capability. Third, we reveal a pronounced vulnerability: employing a CoT attack via a response prefix can elevate the attack success rate by 3.34x on average and from 0.6% to 96.3% for Seed-OSS-36B-Instruct. This critical finding underscores the safety risks inherent in text-completion interfaces and features that allow user-defined response prefixes in LLM services, highlighting an urgent need for architectural and deployment safeguards. Fourth, roleplay, prompt injection, and gradient-based search for adversarial prompts are the predominant methodologies for eliciting unaligned behaviors in modern models.
Qwen3Guard Technical Report
As large language models (LLMs) become more capable and widely used, ensuring the safety of their outputs is increasingly critical. Existing guardrail models, though useful in static evaluation settings, face two major limitations in real-world applications: (1) they typically output only binary "safe/unsafe" labels, which can be interpreted inconsistently across diverse safety policies, rendering them incapable of accommodating varying safety tolerances across domains; and (2) they require complete model outputs before performing safety checks, making them fundamentally incompatible with streaming LLM inference, thereby preventing timely intervention during generation and increasing exposure to harmful partial outputs. To address these challenges, we present Qwen3Guard, a series of multilingual safety guardrail models with two specialized variants: Generative Qwen3Guard, which casts safety classification as an instruction-following task to enable fine-grained tri-class judgments (safe, controversial, unsafe); and Stream Qwen3Guard, which introduces a token-level classification head for real-time safety monitoring during incremental text generation. Both variants are available in three sizes (0.6B, 4B, and 8B parameters) and support up to 119 languages and dialects, providing comprehensive, scalable, and low-latency safety moderation for global LLM deployments. Evaluated across English, Chinese, and multilingual benchmarks, Qwen3Guard achieves state-of-the-art performance in both prompt and response safety classification. All models are released under the Apache 2.0 license for public use.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
When to Make Exceptions: Exploring Language Models as Accounts of Human Moral Judgment
AI systems are becoming increasingly intertwined with human life. In order to effectively collaborate with humans and ensure safety, AI systems need to be able to understand, interpret and predict human moral judgments and decisions. Human moral judgments are often guided by rules, but not always. A central challenge for AI safety is capturing the flexibility of the human moral mind -- the ability to determine when a rule should be broken, especially in novel or unusual situations. In this paper, we present a novel challenge set consisting of rule-breaking question answering (RBQA) of cases that involve potentially permissible rule-breaking -- inspired by recent moral psychology studies. Using a state-of-the-art large language model (LLM) as a basis, we propose a novel moral chain of thought (MORALCOT) prompting strategy that combines the strengths of LLMs with theories of moral reasoning developed in cognitive science to predict human moral judgments. MORALCOT outperforms seven existing LLMs by 6.2% F1, suggesting that modeling human reasoning might be necessary to capture the flexibility of the human moral mind. We also conduct a detailed error analysis to suggest directions for future work to improve AI safety using RBQA. Our data is open-sourced at https://huggingface.co/datasets/feradauto/MoralExceptQA and code at https://github.com/feradauto/MoralCoT
A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
Leaky Thoughts: Large Reasoning Models Are Not Private Thinkers
We study privacy leakage in the reasoning traces of large reasoning models used as personal agents. Unlike final outputs, reasoning traces are often assumed to be internal and safe. We challenge this assumption by showing that reasoning traces frequently contain sensitive user data, which can be extracted via prompt injections or accidentally leak into outputs. Through probing and agentic evaluations, we demonstrate that test-time compute approaches, particularly increased reasoning steps, amplify such leakage. While increasing the budget of those test-time compute approaches makes models more cautious in their final answers, it also leads them to reason more verbosely and leak more in their own thinking. This reveals a core tension: reasoning improves utility but enlarges the privacy attack surface. We argue that safety efforts must extend to the model's internal thinking, not just its outputs.
When to Continue Thinking: Adaptive Thinking Mode Switching for Efficient Reasoning
Large reasoning models (LRMs) achieve remarkable performance via long reasoning chains, but often incur excessive computational overhead due to redundant reasoning, especially on simple tasks. In this work, we systematically quantify the upper bounds of LRMs under both Long-Thinking and No-Thinking modes, and uncover the phenomenon of "Internal Self-Recovery Mechanism" where models implicitly supplement reasoning during answer generation. Building on this insight, we propose Adaptive Self-Recovery Reasoning (ASRR), a framework that suppresses unnecessary reasoning and enables implicit recovery. By introducing accuracy-aware length reward regulation, ASRR adaptively allocates reasoning effort according to problem difficulty, achieving high efficiency with negligible performance sacrifice. Experiments across multiple benchmarks and models show that, compared with GRPO, ASRR reduces reasoning budget by up to 32.5% (1.5B) and 25.7% (7B) with minimal accuracy loss (1.2% and 0.6% pass@1), and significantly boosts harmless rates on safety benchmarks (up to +21.7%). Our results highlight the potential of ASRR for enabling efficient, adaptive, and safer reasoning in LRMs.
ThinkGuard: Deliberative Slow Thinking Leads to Cautious Guardrails
Ensuring the safety of large language models (LLMs) is critical as they are deployed in real-world applications. Existing guardrails rely on rule-based filtering or single-pass classification, limiting their ability to handle nuanced safety violations. To address this, we propose ThinkGuard, a critique-augmented guardrail model that distills knowledge from high-capacity LLMs by generating structured critiques alongside safety labels. Fine-tuned on critique-augmented data, the captured deliberative thinking ability drastically enhances the guardrail's cautiousness and interpretability. Evaluated on multiple safety benchmarks, ThinkGuard achieves the highest average F1 and AUPRC, outperforming all baselines. Compared to LLaMA Guard 3, ThinkGuard improves accuracy by 16.1% and macro F1 by 27.0%. Moreover, it surpasses label-only fine-tuned models, confirming that structured critiques enhance both classification precision and nuanced safety reasoning while maintaining computational efficiency.
Reasoning's Razor: Reasoning Improves Accuracy but Can Hurt Recall at Critical Operating Points in Safety and Hallucination Detection
Reasoning has become a central paradigm for large language models (LLMs), consistently boosting accuracy across diverse benchmarks. Yet its suitability for precision-sensitive tasks remains unclear. We present the first systematic study of reasoning for classification tasks under strict low false positive rate (FPR) regimes. Our analysis covers two tasks--safety detection and hallucination detection--evaluated in both fine-tuned and zero-shot settings, using standard LLMs and Large Reasoning Models (LRMs). Our results reveal a clear trade-off: Think On (reasoning-augmented) generation improves overall accuracy, but underperforms at the low-FPR thresholds essential for practical use. In contrast, Think Off (no reasoning during inference) dominates in these precision-sensitive regimes, with Think On surpassing only when higher FPRs are acceptable. In addition, we find token-based scoring substantially outperforms self-verbalized confidence for precision-sensitive deployments. Finally, a simple ensemble of the two modes recovers the strengths of each. Taken together, our findings position reasoning as a double-edged tool: beneficial for average accuracy, but often ill-suited for applications requiring strict precision.
Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs
Safety limitations in service robotics across various industries have raised significant concerns about the need for robust mechanisms ensuring that robots adhere to safe practices, thereby preventing actions that might harm humans or cause property damage. Despite advances, including the integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), challenges in ensuring consistent safety in autonomous robot actions persist. In this paper, we propose a novel integration of Large Language Models with Embodied Robotic Control Prompts (ERCPs) and Embodied Knowledge Graphs (EKGs) to enhance the safety framework for service robots. ERCPs are designed as predefined instructions that ensure LLMs generate safe and precise responses. These responses are subsequently validated by EKGs, which provide a comprehensive knowledge base ensuring that the actions of the robot are continuously aligned with safety protocols, thereby promoting safer operational practices in varied contexts. Our experimental setup involved diverse real-world tasks, where robots equipped with our framework demonstrated significantly higher compliance with safety standards compared to traditional methods. This integration fosters secure human-robot interactions and positions our methodology at the forefront of AI-driven safety innovations in service robotics.
SafetyAnalyst: Interpretable, transparent, and steerable LLM safety moderation
The ideal LLM content moderation system would be both structurally interpretable (so its decisions can be explained to users) and steerable (to reflect a community's values or align to safety standards). However, current systems fall short on both of these dimensions. To address this gap, we present SafetyAnalyst, a novel LLM safety moderation framework. Given a prompt, SafetyAnalyst creates a structured "harm-benefit tree," which identifies 1) the actions that could be taken if a compliant response were provided, 2) the harmful and beneficial effects of those actions (along with their likelihood, severity, and immediacy), and 3) the stakeholders that would be impacted by those effects. It then aggregates this structured representation into a harmfulness score based on a parameterized set of safety preferences, which can be transparently aligned to particular values. Using extensive harm-benefit features generated by SOTA LLMs on 19k prompts, we fine-tuned an open-weight LM to specialize in generating harm-benefit trees through symbolic knowledge distillation. On a comprehensive set of prompt safety benchmarks, we show that our system (average F1=0.75) outperforms existing LLM safety moderation systems (average F1<0.72) on prompt harmfulness classification, while offering the additional advantages of interpretability and steerability.
Building a Foundational Guardrail for General Agentic Systems via Synthetic Data
While LLM agents can plan multi-step tasks, intervening at the planning stage-before any action is executed-is often the safest way to prevent harm, since certain risks can lead to severe consequences once carried out. However, existing guardrails mostly operate post-execution, which is difficult to scale and leaves little room for controllable supervision at the plan level. To address this challenge, we highlight three critical gaps in current research: data gap, model gap, and evaluation gap. To close the data gap, we introduce AuraGen, a controllable engine that (i) synthesizes benign trajectories, (ii) injects category-labeled risks with calibrated difficulty, and (iii) filters outputs via an automated reward model, producing large and reliable corpora for pre-execution safety. To close the guardian model gap, we propose a foundational guardrail Safiron, combining a cross-planner adapter with a compact guardian model. The adapter unifies different input formats, while Safiron flags risky cases, assigns risk types, and generates rationales; trained in two stages with a broadly explored data recipe, Safiron achieves robust transfer across settings. To close the evaluation gap, we release Pre-Exec Bench, a realistic benchmark covering diverse tools and branching trajectories, which measures detection, fine-grained categorization, explanation, and cross-planner generalization in human-verified scenarios. Extensive experiments demonstrate consistent gains of the proposed guardrail over strong baselines on Pre-Exec Bench, and ablations further distill actionable practices, providing a practical template for safer agentic systems.
Recent Advances towards Safe, Responsible, and Moral Dialogue Systems: A Survey
With the development of artificial intelligence, dialogue systems have been endowed with amazing chit-chat capabilities, and there is widespread interest and discussion about whether the generated contents are socially beneficial. In this paper, we present a new perspective of research scope towards building a safe, responsible, and modal dialogue system, including 1) abusive and toxic contents, 2) unfairness and discrimination, 3) ethics and morality issues, and 4) risk of misleading and privacy information. Besides, we review the mainstream methods for evaluating the safety of large models from the perspectives of exposure and detection of safety issues. The recent advances in methodologies for the safety improvement of both end-to-end dialogue systems and pipeline-based models are further introduced. Finally, we discussed six existing challenges towards responsible AI: explainable safety monitoring, continuous learning of safety issues, robustness against malicious attacks, multimodal information processing, unified research framework, and multidisciplinary theory integration. We hope this survey will inspire further research toward safer dialogue systems.
Safe Reinforcement Learning via Hierarchical Adaptive Chance-Constraint Safeguards
Ensuring safety in Reinforcement Learning (RL), typically framed as a Constrained Markov Decision Process (CMDP), is crucial for real-world exploration applications. Current approaches in handling CMDP struggle to balance optimality and feasibility, as direct optimization methods cannot ensure state-wise in-training safety, and projection-based methods correct actions inefficiently through lengthy iterations. To address these challenges, we propose Adaptive Chance-constrained Safeguards (ACS), an adaptive, model-free safe RL algorithm using the safety recovery rate as a surrogate chance constraint to iteratively ensure safety during exploration and after achieving convergence. Theoretical analysis indicates that the relaxed probabilistic constraint sufficiently guarantees forward invariance to the safe set. And extensive experiments conducted on both simulated and real-world safety-critical tasks demonstrate its effectiveness in enforcing safety (nearly zero-violation) while preserving optimality (+23.8%), robustness, and fast response in stochastic real-world settings.
Socratic-PRMBench: Benchmarking Process Reward Models with Systematic Reasoning Patterns
Process Reward Models (PRMs) are crucial in complex reasoning and problem-solving tasks (e.g., LLM agents with long-horizon decision-making) by verifying the correctness of each intermediate reasoning step. In real-world scenarios, LLMs may apply various reasoning patterns (e.g., decomposition) to solve a problem, potentially suffering from errors under various reasoning patterns. Therefore, PRMs are required to identify errors under various reasoning patterns during the reasoning process. However, existing benchmarks mainly focus on evaluating PRMs with stepwise correctness, ignoring a systematic evaluation of PRMs under various reasoning patterns. To mitigate this gap, we introduce Socratic-PRMBench, a new benchmark to evaluate PRMs systematically under six reasoning patterns, including Transformation, Decomposition, Regather, Deduction, Verification, and Integration. Socratic-PRMBench}comprises 2995 reasoning paths with flaws within the aforementioned six reasoning patterns. Through our experiments on both PRMs and LLMs prompted as critic models, we identify notable deficiencies in existing PRMs. These observations underscore the significant weakness of current PRMs in conducting evaluations on reasoning steps under various reasoning patterns. We hope Socratic-PRMBench can serve as a comprehensive testbed for systematic evaluation of PRMs under diverse reasoning patterns and pave the way for future development of PRMs.
Can We Predict Alignment Before Models Finish Thinking? Towards Monitoring Misaligned Reasoning Models
Open-weights reasoning language models generate long chains-of-thought (CoTs) before producing a final response, which improves performance but introduces additional alignment risks, with harmful content often appearing in both the CoTs and the final outputs. In this work, we investigate if we can use CoTs to predict final response misalignment. We evaluate a range of monitoring approaches, including humans, highly-capable large language models, and text classifiers, using either CoT text or activations. First, we find that a simple linear probe trained on CoT activations can significantly outperform all text-based methods in predicting whether a final response will be safe or unsafe. CoT texts are often unfaithful and can mislead humans and classifiers, while model latents (i.e., CoT activations) offer a more reliable predictive signal. Second, the probe makes accurate predictions before reasoning completes, achieving strong performance even when applied to early CoT segments. These findings generalize across model sizes, families, and safety benchmarks, suggesting that lightweight probes could enable real-time safety monitoring and early intervention during generation.
ProRAG: Process-Supervised Reinforcement Learning for Retrieval-Augmented Generation
Reinforcement learning (RL) has become a promising paradigm for optimizing Retrieval-Augmented Generation (RAG) in complex reasoning tasks. However, traditional outcome-based RL approaches often suffer from reward sparsity and inefficient credit assignment, as coarse-grained scalar rewards fail to identify specific erroneous steps within long-horizon trajectories. This ambiguity frequently leads to "process hallucinations", where models reach correct answers through flawed logic or redundant retrieval steps. Although recent process-aware approaches attempt to mitigate this via static preference learning or heuristic reward shaping, they often lack the on-policy exploration capabilities required to decouple step-level credit from global outcomes. To address these challenges, we propose ProRAG, a process-supervised reinforcement learning framework designed to integrate learned step-level supervision into the online optimization loop. Our framework consists of four stages: (1) Supervised Policy Warmup to initialize the model with a structured reasoning format; (2) construction of an MCTS-based Process Reward Model (PRM) to quantify intermediate reasoning quality; (3) PRM-Guided Reasoning Refinement to align the policy with fine-grained process preferences; and (4) Process-Supervised Reinforcement Learning with a dual-granularity advantage mechanism. By aggregating step-level process rewards with global outcome signals, ProRAG provides precise feedback for every action. Extensive experiments on five multi-hop reasoning benchmarks demonstrate that ProRAG achieves superior overall performance compared to strong outcome-based and process-aware RL baselines, particularly on complex long-horizon tasks, validating the effectiveness of fine-grained process supervision. The code and model are available at https://github.com/lilinwz/ProRAG.
ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom
Large vision-language models (LVLMs) have witnessed significant progress on visual understanding tasks. However, they often prioritize language knowledge over image information on visual reasoning tasks, incurring performance degradation. To tackle this issue, we first identify the drawbacks of existing solutions (i.e., insufficient and irrelevant visual descriptions, and limited multi-modal capacities). We then decompose visual reasoning process into two stages: visual perception (i.e., eyesight) and textual reasoning (i.e., wisdom), and introduce a novel visual reasoning framework named ProReason. This framework features multi-run proactive perception and decoupled vision-reasoning capabilities. Briefly, given a multi-modal question, ProReason iterates proactive information collection and reasoning until the answer can be concluded with necessary and sufficient visual descriptions. Notably, the disassociation of capabilities allows seamless integration of existing large language models (LLMs) to compensate for the reasoning deficits of LVLMs. Our extensive experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods on a wide range of benchmarks for both open-source and closed-source models. In addition, with the assistance of LLMs, ProReason achieves a performance improvement of up to 15% on MMMU benchmark. Our insights into existing solutions and the decoupled perspective for feasible integration of LLMs illuminate future research on visual reasoning techniques, especially LLM-assisted ones.
SOSBENCH: Benchmarking Safety Alignment on Scientific Knowledge
Large language models (LLMs) exhibit advancing capabilities in complex tasks, such as reasoning and graduate-level question answering, yet their resilience against misuse, particularly involving scientifically sophisticated risks, remains underexplored. Existing safety benchmarks typically focus either on instructions requiring minimal knowledge comprehension (e.g., ``tell me how to build a bomb") or utilize prompts that are relatively low-risk (e.g., multiple-choice or classification tasks about hazardous content). Consequently, they fail to adequately assess model safety when handling knowledge-intensive, hazardous scenarios. To address this critical gap, we introduce SOSBench, a regulation-grounded, hazard-focused benchmark encompassing six high-risk scientific domains: chemistry, biology, medicine, pharmacology, physics, and psychology. The benchmark comprises 3,000 prompts derived from real-world regulations and laws, systematically expanded via an LLM-assisted evolutionary pipeline that introduces diverse, realistic misuse scenarios (e.g., detailed explosive synthesis instructions involving advanced chemical formulas). We evaluate frontier models within a unified evaluation framework using our SOSBench. Despite their alignment claims, advanced models consistently disclose policy-violating content across all domains, demonstrating alarmingly high rates of harmful responses (e.g., 79.1% for Deepseek-R1 and 47.3% for GPT-4.1). These results highlight significant safety alignment deficiencies and underscore urgent concerns regarding the responsible deployment of powerful LLMs.
SafetyFlow: An Agent-Flow System for Automated LLM Safety Benchmarking
The rapid proliferation of large language models (LLMs) has intensified the requirement for reliable safety evaluation to uncover model vulnerabilities. To this end, numerous LLM safety evaluation benchmarks are proposed. However, existing benchmarks generally rely on labor-intensive manual curation, which causes excessive time and resource consumption. They also exhibit significant redundancy and limited difficulty. To alleviate these problems, we introduce SafetyFlow, the first agent-flow system designed to automate the construction of LLM safety benchmarks. SafetyFlow can automatically build a comprehensive safety benchmark in only four days without any human intervention by orchestrating seven specialized agents, significantly reducing time and resource cost. Equipped with versatile tools, the agents of SafetyFlow ensure process and cost controllability while integrating human expertise into the automatic pipeline. The final constructed dataset, SafetyFlowBench, contains 23,446 queries with low redundancy and strong discriminative power. Our contribution includes the first fully automated benchmarking pipeline and a comprehensive safety benchmark. We evaluate the safety of 49 advanced LLMs on our dataset and conduct extensive experiments to validate our efficacy and efficiency.
MLLM-as-a-Judge for Image Safety without Human Labeling
Image content safety has become a significant challenge with the rise of visual media on online platforms. Meanwhile, in the age of AI-generated content (AIGC), many image generation models are capable of producing harmful content, such as images containing sexual or violent material. Thus, it becomes crucial to identify such unsafe images based on established safety rules. Pre-trained Multimodal Large Language Models (MLLMs) offer potential in this regard, given their strong pattern recognition abilities. Existing approaches typically fine-tune MLLMs with human-labeled datasets, which however brings a series of drawbacks. First, relying on human annotators to label data following intricate and detailed guidelines is both expensive and labor-intensive. Furthermore, users of safety judgment systems may need to frequently update safety rules, making fine-tuning on human-based annotation more challenging. This raises the research question: Can we detect unsafe images by querying MLLMs in a zero-shot setting using a predefined safety constitution (a set of safety rules)? Our research showed that simply querying pre-trained MLLMs does not yield satisfactory results. This lack of effectiveness stems from factors such as the subjectivity of safety rules, the complexity of lengthy constitutions, and the inherent biases in the models. To address these challenges, we propose a MLLM-based method includes objectifying safety rules, assessing the relevance between rules and images, making quick judgments based on debiased token probabilities with logically complete yet simplified precondition chains for safety rules, and conducting more in-depth reasoning with cascaded chain-of-thought processes if necessary. Experiment results demonstrate that our method is highly effective for zero-shot image safety judgment tasks.
Shape it Up! Restoring LLM Safety during Finetuning
Finetuning large language models (LLMs) enables user-specific customization but introduces critical safety risks: even a few harmful examples can compromise safety alignment. A common mitigation strategy is to update the model more strongly on examples deemed safe, while downweighting or excluding those flagged as unsafe. However, because safety context can shift within a single example, updating the model equally on both harmful and harmless parts of a response is suboptimal-a coarse treatment we term static safety shaping. In contrast, we propose dynamic safety shaping (DSS), a framework that uses fine-grained safety signals to reinforce learning from safe segments of a response while suppressing unsafe content. To enable such fine-grained control during finetuning, we introduce a key insight: guardrail models, traditionally used for filtering, can be repurposed to evaluate partial responses, tracking how safety risk evolves throughout the response, segment by segment. This leads to the Safety Trajectory Assessment of Response (STAR), a token-level signal that enables shaping to operate dynamically over the training sequence. Building on this, we present STAR-DSS, guided by STAR scores, that robustly mitigates finetuning risks and delivers substantial safety improvements across diverse threats, datasets, and model families-all without compromising capability on intended tasks. We encourage future safety research to build on dynamic shaping principles for stronger mitigation against evolving finetuning risks.
SafeInfer: Context Adaptive Decoding Time Safety Alignment for Large Language Models
Safety-aligned language models often exhibit fragile and imbalanced safety mechanisms, increasing the likelihood of generating unsafe content. In addition, incorporating new knowledge through editing techniques to language models can further compromise safety. To address these issues, we propose SafeInfer, a context-adaptive, decoding-time safety alignment strategy for generating safe responses to user queries. SafeInfer comprises two phases: the safety amplification phase, which employs safe demonstration examples to adjust the model's hidden states and increase the likelihood of safer outputs, and the safety-guided decoding phase, which influences token selection based on safety-optimized distributions, ensuring the generated content complies with ethical guidelines. Further, we present HarmEval, a novel benchmark for extensive safety evaluations, designed to address potential misuse scenarios in accordance with the policies of leading AI tech giants.
Bresa: Bio-inspired Reflexive Safe Reinforcement Learning for Contact-Rich Robotic Tasks
Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.
Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration
Conversational systems based on Large Language Models (LLMs), such as ChatGPT, show exceptional proficiency in context understanding and response generation. However, despite their impressive capabilities, they still possess limitations, such as providing randomly-guessed answers to ambiguous queries or failing to refuse users' requests, both of which are considered aspects of a conversational agent's proactivity. This raises the question of whether LLM-based conversational systems are equipped to handle proactive dialogue problems. In this work, we conduct a comprehensive analysis of LLM-based conversational systems, specifically focusing on three aspects of proactive dialogue systems: clarification, target-guided, and non-collaborative dialogues. To trigger the proactivity of LLMs, we propose the Proactive Chain-of-Thought prompting scheme, which augments LLMs with the goal planning capability over descriptive reasoning chains. Empirical findings are discussed to promote future studies on LLM-based proactive dialogue systems.
ProRefine: Inference-time Prompt Refinement with Textual Feedback
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, are becoming increasingly prevalent. However, these workflows often suffer from error propagation and sub-optimal performance, largely due to poorly designed prompts that fail to effectively guide individual agents. This is a critical problem because it limits the reliability and scalability of these powerful systems. We introduce ProRefine, an innovative inference-time prompt optimization method that leverages textual feedback from large language models (LLMs) to address this challenge. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to match the performance of larger ones, highlighting its potential for efficient and scalable AI deployment, and democratizing access to high-performing AI.
Aegis2.0: A Diverse AI Safety Dataset and Risks Taxonomy for Alignment of LLM Guardrails
As Large Language Models (LLMs) and generative AI become increasingly widespread, concerns about content safety have grown in parallel. Currently, there is a clear lack of high-quality, human-annotated datasets that address the full spectrum of LLM-related safety risks and are usable for commercial applications. To bridge this gap, we propose a comprehensive and adaptable taxonomy for categorizing safety risks, structured into 12 top-level hazard categories with an extension to 9 fine-grained subcategories. This taxonomy is designed to meet the diverse requirements of downstream users, offering more granular and flexible tools for managing various risk types. Using a hybrid data generation pipeline that combines human annotations with a multi-LLM "jury" system to assess the safety of responses, we obtain Aegis 2.0, a carefully curated collection of 34,248 samples of human-LLM interactions, annotated according to our proposed taxonomy. To validate its effectiveness, we demonstrate that several lightweight models, trained using parameter-efficient techniques on Aegis 2.0, achieve performance competitive with leading safety models fully fine-tuned on much larger, non-commercial datasets. In addition, we introduce a novel training blend that combines safety with topic following data.This approach enhances the adaptability of guard models, enabling them to generalize to new risk categories defined during inference. We plan to open-source Aegis 2.0 data and models to the research community to aid in the safety guardrailing of LLMs.
Safety Assessment of Chinese Large Language Models
With the rapid popularity of large language models such as ChatGPT and GPT-4, a growing amount of attention is paid to their safety concerns. These models may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes such as fraud and dissemination of misleading information. Evaluating and enhancing their safety is particularly essential for the wide application of large language models (LLMs). To further promote the safe deployment of LLMs, we develop a Chinese LLM safety assessment benchmark. Our benchmark explores the comprehensive safety performance of LLMs from two perspectives: 8 kinds of typical safety scenarios and 6 types of more challenging instruction attacks. Our benchmark is based on a straightforward process in which it provides the test prompts and evaluates the safety of the generated responses from the evaluated model. In evaluation, we utilize the LLM's strong evaluation ability and develop it as a safety evaluator by prompting. On top of this benchmark, we conduct safety assessments and analyze 15 LLMs including the OpenAI GPT series and other well-known Chinese LLMs, where we observe some interesting findings. For example, we find that instruction attacks are more likely to expose safety issues of all LLMs. Moreover, to promote the development and deployment of safe, responsible, and ethical AI, we publicly release SafetyPrompts including 100k augmented prompts and responses by LLMs.
Combating Partial Perception Deficit in Autonomous Driving with Multimodal LLM Commonsense
Partial perception deficits can compromise autonomous vehicle safety by disrupting environmental understanding. Current protocols typically respond with immediate stops or minimal-risk maneuvers, worsening traffic flow and lacking flexibility for rare driving scenarios. In this paper, we propose LLM-RCO, a framework leveraging large language models to integrate human-like driving commonsense into autonomous systems facing perception deficits. LLM-RCO features four key modules: hazard inference, short-term motion planner, action condition verifier, and safety constraint generator. These modules interact with the dynamic driving environment, enabling proactive and context-aware control actions to override the original control policy of autonomous agents. To improve safety in such challenging conditions, we construct DriveLM-Deficit, a dataset of 53,895 video clips featuring deficits of safety-critical objects, complete with annotations for LLM-based hazard inference and motion planning fine-tuning. Extensive experiments in adverse driving conditions with the CARLA simulator demonstrate that systems equipped with LLM-RCO significantly improve driving performance, highlighting its potential for enhancing autonomous driving resilience against adverse perception deficits. Our results also show that LLMs fine-tuned with DriveLM-Deficit can enable more proactive movements instead of conservative stops in the context of perception deficits.
LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models
Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.
Taxonomy-Adaptive Moderation Model with Robust Guardrails for Large Language Models
Large Language Models (LLMs) are typically aligned for safety during the post-training phase; however, they may still generate inappropriate outputs that could potentially pose risks to users. This challenge underscores the need for robust safeguards that operate across both model inputs and outputs. In this work, we introduce Roblox Guard 1.0, a state-of-the-art instruction fine-tuned LLM designed to enhance the safety of LLM systems through comprehensive input-output moderation, using a pipeline of LLMs to enhance moderation capability. Built on the Llama-3.1-8B-Instruct backbone, our model is instruction fine-tuned to generalize across previously unseen safety taxonomies and demonstrates strong performance on out-of-domain safety benchmarks. The instruction fine-tuning process uses a mix of synthetic and open-source safety datasets, augmented with chain-of-thought (CoT) rationales and input inversion to enhance contextual understanding and decision making. To support systematic evaluation, we also release RobloxGuard-Eval, a new benchmark featuring an extensible safety taxonomy to assess the effectiveness of LLM guardrails and moderation frameworks.
Concrete Problems in AI Safety
Rapid progress in machine learning and artificial intelligence (AI) has brought increasing attention to the potential impacts of AI technologies on society. In this paper we discuss one such potential impact: the problem of accidents in machine learning systems, defined as unintended and harmful behavior that may emerge from poor design of real-world AI systems. We present a list of five practical research problems related to accident risk, categorized according to whether the problem originates from having the wrong objective function ("avoiding side effects" and "avoiding reward hacking"), an objective function that is too expensive to evaluate frequently ("scalable supervision"), or undesirable behavior during the learning process ("safe exploration" and "distributional shift"). We review previous work in these areas as well as suggesting research directions with a focus on relevance to cutting-edge AI systems. Finally, we consider the high-level question of how to think most productively about the safety of forward-looking applications of AI.
Updating Robot Safety Representations Online from Natural Language Feedback
Robots must operate safely when deployed in novel and human-centered environments, like homes. Current safe control approaches typically assume that the safety constraints are known a priori, and thus, the robot can pre-compute a corresponding safety controller. While this may make sense for some safety constraints (e.g., avoiding collision with walls by analyzing a floor plan), other constraints are more complex (e.g., spills), inherently personal, context-dependent, and can only be identified at deployment time when the robot is interacting in a specific environment and with a specific person (e.g., fragile objects, expensive rugs). Here, language provides a flexible mechanism to communicate these evolving safety constraints to the robot. In this work, we use vision language models (VLMs) to interpret language feedback and the robot's image observations to continuously update the robot's representation of safety constraints. With these inferred constraints, we update a Hamilton-Jacobi reachability safety controller online via efficient warm-starting techniques. Through simulation and hardware experiments, we demonstrate the robot's ability to infer and respect language-based safety constraints with the proposed approach.
Responsible AI Technical Report
KT developed a Responsible AI (RAI) assessment methodology and risk mitigation technologies to ensure the safety and reliability of AI services. By analyzing the Basic Act on AI implementation and global AI governance trends, we established a unique approach for regulatory compliance and systematically identify and manage all potential risk factors from AI development to operation. We present a reliable assessment methodology that systematically verifies model safety and robustness based on KT's AI risk taxonomy tailored to the domestic environment. We also provide practical tools for managing and mitigating identified AI risks. With the release of this report, we also release proprietary Guardrail : SafetyGuard that blocks harmful responses from AI models in real-time, supporting the enhancement of safety in the domestic AI development ecosystem. We also believe these research outcomes provide valuable insights for organizations seeking to develop Responsible AI.
LabSafety Bench: Benchmarking LLMs on Safety Issues in Scientific Labs
Laboratory accidents pose significant risks to human life and property, underscoring the importance of robust safety protocols. Despite advancements in safety training, laboratory personnel may still unknowingly engage in unsafe practices. With the increasing reliance on large language models (LLMs) for guidance in various fields, including laboratory settings, there is a growing concern about their reliability in critical safety-related decision-making. Unlike trained human researchers, LLMs lack formal lab safety education, raising questions about their ability to provide safe and accurate guidance. Existing research on LLM trustworthiness primarily focuses on issues such as ethical compliance, truthfulness, and fairness but fails to fully cover safety-critical real-world applications, like lab safety. To address this gap, we propose the Laboratory Safety Benchmark (LabSafety Bench), a comprehensive evaluation framework based on a new taxonomy aligned with Occupational Safety and Health Administration (OSHA) protocols. This benchmark includes 765 multiple-choice questions verified by human experts, assessing LLMs and vision language models (VLMs) performance in lab safety contexts. Our evaluations demonstrate that while GPT-4o outperforms human participants, it is still prone to critical errors, highlighting the risks of relying on LLMs in safety-critical environments. Our findings emphasize the need for specialized benchmarks to accurately assess the trustworthiness of LLMs in real-world safety applications.
