new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Beyond Uniform Query Distribution: Key-Driven Grouped Query Attention

The Transformer architecture has revolutionized deep learning through its Self-Attention mechanism, which effectively captures contextual information. However, the memory footprint of Self-Attention presents significant challenges for long-sequence tasks. Grouped Query Attention (GQA) addresses this issue by grouping queries and mean-pooling the corresponding key-value heads - reducing the number of overall parameters and memory requirements in a flexible manner without adversely compromising model accuracy. In this work, we introduce enhancements to GQA, focusing on two novel approaches that deviate from the static nature of grouping: Key-Distributed GQA (KDGQA) and Dynamic Key-Distributed GQA (DGQA), which leverage information from the norms of the key heads to inform query allocation. Specifically, KDGQA looks at the ratios of the norms of the key heads during each forward pass, while DGQA examines the ratios of the norms as they evolve through training. Additionally, we present Perturbed GQA (PGQA) as a case-study, which introduces variability in (static) group formation via subtracting noise from the attention maps. Our experiments with up-trained Vision Transformers, for Image Classification on datasets such as CIFAR-10, CIFAR-100, Food101, and Tiny ImageNet, demonstrate the promise of these variants in improving upon the original GQA through more informed and adaptive grouping mechanisms: specifically ViT-L experiences accuracy gains of up to 8% when utilizing DGQA in comparison to GQA and other variants. We further analyze the impact of the number of Key-Value Heads on performance, underscoring the importance of utilizing query-key affinities. Code is available on GitHub.

  • 5 authors
·
Aug 15, 2024

Optimizing Mixture of Block Attention

Mixture of Block Attention (MoBA) (Lu et al., 2025) is a promising building block for efficiently processing long contexts in LLMs by enabling queries to sparsely attend to a small subset of key-value blocks, drastically reducing computational cost. However, the design principles governing MoBA's performance are poorly understood, and it lacks an efficient GPU implementation, hindering its practical adoption. In this paper, we first develop a statistical model to analyze MoBA's underlying mechanics. Our model reveals that performance critically depends on the router's ability to accurately distinguish relevant from irrelevant blocks based on query-key affinities. We derive a signal-to-noise ratio that formally connects architectural parameters to this retrieval accuracy. Guided by our analysis, we identify two key pathways for improvement: using smaller block sizes and applying a short convolution on keys to cluster relevant signals, which enhances routing accuracy. While theoretically better, small block sizes are inefficient on GPUs. To bridge this gap, we introduce FlashMoBA, a hardware-aware CUDA kernel that enables efficient MoBA execution even with the small block sizes our theory recommends. We validate our insights by training LLMs from scratch, showing that our improved MoBA models match the performance of dense attention baselines. FlashMoBA achieves up to 14.7x speedup over FlashAttention-2 for small blocks, making our theoretically-grounded improvements practical. Code is available at: https://github.com/mit-han-lab/flash-moba.

  • 4 authors
·
Nov 14, 2025