new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

RealGen: Photorealistic Text-to-Image Generation via Detector-Guided Rewards

With the continuous advancement of image generation technology, advanced models such as GPT-Image-1 and Qwen-Image have achieved remarkable text-to-image consistency and world knowledge However, these models still fall short in photorealistic image generation. Even on simple T2I tasks, they tend to produce " fake" images with distinct AI artifacts, often characterized by "overly smooth skin" and "oily facial sheens". To recapture the original goal of "indistinguishable-from-reality" generation, we propose RealGen, a photorealistic text-to-image framework. RealGen integrates an LLM component for prompt optimization and a diffusion model for realistic image generation. Inspired by adversarial generation, RealGen introduces a "Detector Reward" mechanism, which quantifies artifacts and assesses realism using both semantic-level and feature-level synthetic image detectors. We leverage this reward signal with the GRPO algorithm to optimize the entire generation pipeline, significantly enhancing image realism and detail. Furthermore, we propose RealBench, an automated evaluation benchmark employing Detector-Scoring and Arena-Scoring. It enables human-free photorealism assessment, yielding results that are more accurate and aligned with real user experience. Experiments demonstrate that RealGen significantly outperforms general models like GPT-Image-1 and Qwen-Image, as well as specialized photorealistic models like FLUX-Krea, in terms of realism, detail, and aesthetics. The code is available at https://github.com/yejy53/RealGen.

  • 10 authors
·
Nov 29, 2025 2

DermaCon-IN: A Multi-concept Annotated Dermatological Image Dataset of Indian Skin Disorders for Clinical AI Research

Artificial intelligence is poised to augment dermatological care by enabling scalable image-based diagnostics. Yet, the development of robust and equitable models remains hindered by datasets that fail to capture the clinical and demographic complexity of real-world practice. This complexity stems from region-specific disease distributions, wide variation in skin tones, and the underrepresentation of outpatient scenarios from non-Western populations. We introduce DermaCon-IN, a prospectively curated dermatology dataset comprising over 5,450 clinical images from approximately 3,000 patients across outpatient clinics in South India. Each image is annotated by board-certified dermatologists with over 240 distinct diagnoses, structured under a hierarchical, etiology-based taxonomy adapted from Rook's classification. The dataset captures a wide spectrum of dermatologic conditions and tonal variation commonly seen in Indian outpatient care. We benchmark a range of architectures including convolutional models (ResNet, DenseNet, EfficientNet), transformer-based models (ViT, MaxViT, Swin), and Concept Bottleneck Models to establish baseline performance and explore how anatomical and concept-level cues may be integrated. These results are intended to guide future efforts toward interpretable and clinically realistic models. DermaCon-IN provides a scalable and representative foundation for advancing dermatology AI in real-world settings.

  • 11 authors
·
Jun 6, 2025

Crowdsourcing Dermatology Images with Google Search Ads: Creating a Real-World Skin Condition Dataset

Background: Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education, and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods: We used Google Search advertisements to invite contributions to an open access dataset of images of dermatology conditions, demographic and symptom information. With informed contributor consent, we describe and release this dataset containing 10,408 images from 5,033 contributions from internet users in the United States over 8 months starting March 2023. The dataset includes dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and Monk Skin Tone (eMST) labels for the images. Results: We received a median of 22 submissions/day (IQR 14-30). Female (66.72%) and younger (52% < age 40) contributors had a higher representation in the dataset compared to the US population, and 32.6% of contributors reported a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Dermatologist confidence in assigning a differential diagnosis increased with the number of available variables, and showed a weaker correlation with image sharpness (Spearman's P values <0.001 and 0.01 respectively). Most contributions were short-duration (54% with onset < 7 days ago ) and 89% were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset. The dataset is available at github.com/google-research-datasets/scin . Conclusion: Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions.

  • 20 authors
·
Feb 28, 2024

Derm1M: A Million-scale Vision-Language Dataset Aligned with Clinical Ontology Knowledge for Dermatology

The emergence of vision-language models has transformed medical AI, enabling unprecedented advances in diagnostic capability and clinical applications. However, progress in dermatology has lagged behind other medical domains due to the lack of standard image-text pairs. Existing dermatological datasets are limited in both scale and depth, offering only single-label annotations across a narrow range of diseases instead of rich textual descriptions, and lacking the crucial clinical context needed for real-world applications. To address these limitations, we present Derm1M, the first large-scale vision-language dataset for dermatology, comprising 1,029,761 image-text pairs. Built from diverse educational resources and structured around a standard ontology collaboratively developed by experts, Derm1M provides comprehensive coverage for over 390 skin conditions across four hierarchical levels and 130 clinical concepts with rich contextual information such as medical history, symptoms, and skin tone. To demonstrate Derm1M potential in advancing both AI research and clinical application, we pretrained a series of CLIP-like models, collectively called DermLIP, on this dataset. The DermLIP family significantly outperforms state-of-the-art foundation models on eight diverse datasets across multiple tasks, including zero-shot skin disease classification, clinical and artifacts concept identification, few-shot/full-shot learning, and cross-modal retrieval. Our dataset and code will be public.

Monash University
·
Mar 19, 2025 2

Skin disease diagnosis with deep learning: a review

Skin cancer is one of the most threatening diseases worldwide. However, diagnosing skin cancer correctly is challenging. Recently, deep learning algorithms have emerged to achieve excellent performance on various tasks. Particularly, they have been applied to the skin disease diagnosis tasks. In this paper, we present a review on deep learning methods and their applications in skin disease diagnosis. We first present a brief introduction to skin diseases and image acquisition methods in dermatology, and list several publicly available skin datasets for training and testing algorithms. Then, we introduce the conception of deep learning and review popular deep learning architectures. Thereafter, popular deep learning frameworks facilitating the implementation of deep learning algorithms and performance evaluation metrics are presented. As an important part of this article, we then review the literature involving deep learning methods for skin disease diagnosis from several aspects according to the specific tasks. Additionally, we discuss the challenges faced in the area and suggest possible future research directions. The major purpose of this article is to provide a conceptual and systematically review of the recent works on skin disease diagnosis with deep learning. Given the popularity of deep learning, there remains great challenges in the area, as well as opportunities that we can explore in the future.

  • 4 authors
·
Nov 11, 2020 2

Pixel-Aware Stable Diffusion for Realistic Image Super-resolution and Personalized Stylization

Realistic image super-resolution (Real-ISR) aims to reproduce perceptually realistic image details from a low-quality input. The commonly used adversarial training based Real-ISR methods often introduce unnatural visual artifacts and fail to generate realistic textures for natural scene images. The recently developed generative stable diffusion models provide a potential solution to Real-ISR with pre-learned strong image priors. However, the existing methods along this line either fail to keep faithful pixel-wise image structures or resort to extra skipped connections to reproduce details, which requires additional training in image space and limits their extension to other related tasks in latent space such as image stylization. In this work, we propose a pixel-aware stable diffusion (PASD) network to achieve robust Real-ISR as well as personalized stylization. In specific, a pixel-aware cross attention module is introduced to enable diffusion models perceiving image local structures in pixel-wise level, while a degradation removal module is used to extract degradation insensitive features to guide the diffusion process together with image high level information. By simply replacing the base diffusion model with a personalized one, our method can generate diverse stylized images without the need to collect pairwise training data. PASD can be easily integrated into existing diffusion models such as Stable Diffusion. Experiments on Real-ISR and personalized stylization demonstrate the effectiveness of our proposed approach. The source code and models can be found at https://github.com/yangxy/PASD.

  • 4 authors
·
Aug 28, 2023

Melanoma Detection using Adversarial Training and Deep Transfer Learning

Skin lesion datasets consist predominantly of normal samples with only a small percentage of abnormal ones, giving rise to the class imbalance problem. Also, skin lesion images are largely similar in overall appearance owing to the low inter-class variability. In this paper, we propose a two-stage framework for automatic classification of skin lesion images using adversarial training and transfer learning toward melanoma detection. In the first stage, we leverage the inter-class variation of the data distribution for the task of conditional image synthesis by learning the inter-class mapping and synthesizing under-represented class samples from the over-represented ones using unpaired image-to-image translation. In the second stage, we train a deep convolutional neural network for skin lesion classification using the original training set combined with the newly synthesized under-represented class samples. The training of this classifier is carried out by minimizing the focal loss function, which assists the model in learning from hard examples, while down-weighting the easy ones. Experiments conducted on a dermatology image benchmark demonstrate the superiority of our proposed approach over several standard baseline methods, achieving significant performance improvements. Interestingly, we show through feature visualization and analysis that our method leads to context based lesion assessment that can reach an expert dermatologist level.

  • 2 authors
·
Apr 14, 2020

Enhancing Skin Disease Diagnosis: Interpretable Visual Concept Discovery with SAM

Current AI-assisted skin image diagnosis has achieved dermatologist-level performance in classifying skin cancer, driven by rapid advancements in deep learning architectures. However, unlike traditional vision tasks, skin images in general present unique challenges due to the limited availability of well-annotated datasets, complex variations in conditions, and the necessity for detailed interpretations to ensure patient safety. Previous segmentation methods have sought to reduce image noise and enhance diagnostic performance, but these techniques require fine-grained, pixel-level ground truth masks for training. In contrast, with the rise of foundation models, the Segment Anything Model (SAM) has been introduced to facilitate promptable segmentation, enabling the automation of the segmentation process with simple yet effective prompts. Efforts applying SAM predominantly focus on dermatoscopy images, which present more easily identifiable lesion boundaries than clinical photos taken with smartphones. This limitation constrains the practicality of these approaches to real-world applications. To overcome the challenges posed by noisy clinical photos acquired via non-standardized protocols and to improve diagnostic accessibility, we propose a novel Cross-Attentive Fusion framework for interpretable skin lesion diagnosis. Our method leverages SAM to generate visual concepts for skin diseases using prompts, integrating local visual concepts with global image features to enhance model performance. Extensive evaluation on two skin disease datasets demonstrates our proposed method's effectiveness on lesion diagnosis and interpretability.

  • 5 authors
·
Sep 14, 2024

A deep learning system for differential diagnosis of skin diseases

Skin conditions affect an estimated 1.9 billion people worldwide. A shortage of dermatologists causes long wait times and leads patients to seek dermatologic care from general practitioners. However, the diagnostic accuracy of general practitioners has been reported to be only 0.24-0.70 (compared to 0.77-0.96 for dermatologists), resulting in referral errors, delays in care, and errors in diagnosis and treatment. In this paper, we developed a deep learning system (DLS) to provide a differential diagnosis of skin conditions for clinical cases (skin photographs and associated medical histories). The DLS distinguishes between 26 skin conditions that represent roughly 80% of the volume of skin conditions seen in primary care. The DLS was developed and validated using de-identified cases from a teledermatology practice serving 17 clinical sites via a temporal split: the first 14,021 cases for development and the last 3,756 cases for validation. On the validation set, where a panel of three board-certified dermatologists defined the reference standard for every case, the DLS achieved 0.71 and 0.93 top-1 and top-3 accuracies respectively. For a random subset of the validation set (n=963 cases), 18 clinicians reviewed the cases for comparison. On this subset, the DLS achieved a 0.67 top-1 accuracy, non-inferior to board-certified dermatologists (0.63, p<0.001), and higher than primary care physicians (PCPs, 0.45) and nurse practitioners (NPs, 0.41). The top-3 accuracy showed a similar trend: 0.90 DLS, 0.75 dermatologists, 0.60 PCPs, and 0.55 NPs. These results highlight the potential of the DLS to augment general practitioners to accurately diagnose skin conditions by suggesting differential diagnoses that may not have been considered. Future work will be needed to prospectively assess the clinical impact of using this tool in actual clinical workflows.

  • 22 authors
·
Sep 11, 2019

FashionR2R: Texture-preserving Rendered-to-Real Image Translation with Diffusion Models

Modeling and producing lifelike clothed human images has attracted researchers' attention from different areas for decades, with the complexity from highly articulated and structured content. Rendering algorithms decompose and simulate the imaging process of a camera, while are limited by the accuracy of modeled variables and the efficiency of computation. Generative models can produce impressively vivid human images, however still lacking in controllability and editability. This paper studies photorealism enhancement of rendered images, leveraging generative power from diffusion models on the controlled basis of rendering. We introduce a novel framework to translate rendered images into their realistic counterparts, which consists of two stages: Domain Knowledge Injection (DKI) and Realistic Image Generation (RIG). In DKI, we adopt positive (real) domain finetuning and negative (rendered) domain embedding to inject knowledge into a pretrained Text-to-image (T2I) diffusion model. In RIG, we generate the realistic image corresponding to the input rendered image, with a Texture-preserving Attention Control (TAC) to preserve fine-grained clothing textures, exploiting the decoupled features encoded in the UNet structure. Additionally, we introduce SynFashion dataset, featuring high-quality digital clothing images with diverse textures. Extensive experimental results demonstrate the superiority and effectiveness of our method in rendered-to-real image translation.

  • 7 authors
·
Oct 18, 2024

A Multimodal Vision Foundation Model for Clinical Dermatology

Diagnosing and treating skin diseases require advanced visual skills across domains and the ability to synthesize information from multiple imaging modalities. While current deep learning models excel at specific tasks like skin cancer diagnosis from dermoscopic images, they struggle to meet the complex, multimodal requirements of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on over 2 million real-world skin disease images from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse benchmarks, including skin cancer screening, risk stratification, differential diagnosis of common and rare skin conditions, lesion segmentation, longitudinal monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models when using only 10% of labeled data. We conducted three reader studies to assess PanDerm's potential clinical utility. PanDerm outperformed clinicians by 10.2% in early-stage melanoma detection through longitudinal analysis, improved clinicians' skin cancer diagnostic accuracy by 11% on dermoscopy images, and enhanced non-dermatologist healthcare providers' differential diagnosis by 16.5% across 128 skin conditions on clinical photographs. These results demonstrate PanDerm's potential to improve patient care across diverse clinical scenarios and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare. The code can be found at https://github.com/SiyuanYan1/PanDerm.

  • 25 authors
·
Oct 19, 2024

ImagiNet: A Multi-Content Dataset for Generalizable Synthetic Image Detection via Contrastive Learning

Generative models, such as diffusion models (DMs), variational autoencoders (VAEs), and generative adversarial networks (GANs), produce images with a level of authenticity that makes them nearly indistinguishable from real photos and artwork. While this capability is beneficial for many industries, the difficulty of identifying synthetic images leaves online media platforms vulnerable to impersonation and misinformation attempts. To support the development of defensive methods, we introduce ImagiNet, a high-resolution and balanced dataset for synthetic image detection, designed to mitigate potential biases in existing resources. It contains 200K examples, spanning four content categories: photos, paintings, faces, and uncategorized. Synthetic images are produced with open-source and proprietary generators, whereas real counterparts of the same content type are collected from public datasets. The structure of ImagiNet allows for a two-track evaluation system: i) classification as real or synthetic and ii) identification of the generative model. To establish a baseline, we train a ResNet-50 model using a self-supervised contrastive objective (SelfCon) for each track. The model demonstrates state-of-the-art performance and high inference speed across established benchmarks, achieving an AUC of up to 0.99 and balanced accuracy ranging from 86% to 95%, even under social network conditions that involve compression and resizing. Our data and code are available at https://github.com/delyan-boychev/imaginet.

  • 2 authors
·
Jul 29, 2024 2

Boosting EfficientNets Ensemble Performance via Pseudo-Labels and Synthetic Images by pix2pixHD for Infection and Ischaemia Classification in Diabetic Foot Ulcers

Diabetic foot ulcers are a common manifestation of lesions on the diabetic foot, a syndrome acquired as a long-term complication of diabetes mellitus. Accompanying neuropathy and vascular damage promote acquisition of pressure injuries and tissue death due to ischaemia. Affected areas are prone to infections, hindering the healing progress. The research at hand investigates an approach on classification of infection and ischaemia, conducted as part of the Diabetic Foot Ulcer Challenge (DFUC) 2021. Different models of the EfficientNet family are utilized in ensembles. An extension strategy for the training data is applied, involving pseudo-labeling for unlabeled images, and extensive generation of synthetic images via pix2pixHD to cope with severe class imbalances. The resulting extended training dataset features 8.68 times the size of the baseline and shows a real to synthetic image ratio of 1:3. Performances of models and ensembles trained on the baseline and extended training dataset are compared. Synthetic images featured a broad qualitative variety. Results show that models trained on the extended training dataset as well as their ensemble benefit from the large extension. F1-Scores for rare classes receive outstanding boosts, while those for common classes are either not harmed or boosted moderately. A critical discussion concretizes benefits and identifies limitations, suggesting improvements. The work concludes that classification performance of individual models as well as that of ensembles can be boosted utilizing synthetic images. Especially performance for rare classes benefits notably.

  • 3 authors
·
Nov 30, 2021

DermoGPT: Open Weights and Open Data for Morphology-Grounded Dermatological Reasoning MLLMs

Multimodal Large Language Models (MLLMs) show promise for medical applications, yet progress in dermatology lags due to limited training data, narrow task coverage, and lack of clinically-grounded supervision that mirrors expert diagnostic workflows. We present a comprehensive framework to address these gaps. First, we introduce DermoInstruct, a large-scale morphology-anchored instruction corpus comprising 211,243 images and 772,675 trajectories across five task formats, capturing the complete diagnostic pipeline from morphological observation and clinical reasoning to final diagnosis. Second, we establish DermoBench, a rigorous benchmark evaluating 11 tasks across four clinical axes: Morphology, Diagnosis, Reasoning, and Fairness, including a challenging subset of 3,600 expert-verified open-ended instances and human performance baselines. Third, we develop DermoGPT, a dermatology reasoning MLLM trained via supervised fine-tuning followed by our Morphologically-Anchored Visual-Inference-Consistent (MAVIC) reinforcement learning objective, which enforces consistency between visual observations and diagnostic conclusions. At inference, we deploy Confidence-Consistency Test-time adaptation (CCT) for robust predictions. Experiments show DermoGPT significantly outperforms 16 representative baselines across all axes, achieving state-of-the-art performance while substantially narrowing the human-AI gap. DermoInstruct, DermoBench and DermoGPT will be made publicly available at https://github.com/mendicant04/DermoGPT upon acceptance.

  • 5 authors
·
Jan 5

HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for Single-View 3D Hair Modeling

In this work, we tackle the challenging problem of learning-based single-view 3D hair modeling. Due to the great difficulty of collecting paired real image and 3D hair data, using synthetic data to provide prior knowledge for real domain becomes a leading solution. This unfortunately introduces the challenge of domain gap. Due to the inherent difficulty of realistic hair rendering, existing methods typically use orientation maps instead of hair images as input to bridge the gap. We firmly think an intermediate representation is essential, but we argue that orientation map using the dominant filtering-based methods is sensitive to uncertain noise and far from a competent representation. Thus, we first raise this issue up and propose a novel intermediate representation, termed as HairStep, which consists of a strand map and a depth map. It is found that HairStep not only provides sufficient information for accurate 3D hair modeling, but also is feasible to be inferred from real images. Specifically, we collect a dataset of 1,250 portrait images with two types of annotations. A learning framework is further designed to transfer real images to the strand map and depth map. It is noted that, an extra bonus of our new dataset is the first quantitative metric for 3D hair modeling. Our experiments show that HairStep narrows the domain gap between synthetic and real and achieves state-of-the-art performance on single-view 3D hair reconstruction.

  • 7 authors
·
Mar 5, 2023

When Synthetic Traces Hide Real Content: Analysis of Stable Diffusion Image Laundering

In recent years, methods for producing highly realistic synthetic images have significantly advanced, allowing the creation of high-quality images from text prompts that describe the desired content. Even more impressively, Stable Diffusion (SD) models now provide users with the option of creating synthetic images in an image-to-image translation fashion, modifying images in the latent space of advanced autoencoders. This striking evolution, however, brings an alarming consequence: it is possible to pass an image through SD autoencoders to reproduce a synthetic copy of the image with high realism and almost no visual artifacts. This process, known as SD image laundering, can transform real images into lookalike synthetic ones and risks complicating forensic analysis for content authenticity verification. Our paper investigates the forensic implications of image laundering, revealing a serious potential to obscure traces of real content, including sensitive and harmful materials that could be mistakenly classified as synthetic, thereby undermining the protection of individuals depicted. To address this issue, we propose a two-stage detection pipeline that effectively differentiates between pristine, laundered, and fully synthetic images (those generated from text prompts), showing robustness across various conditions. Finally, we highlight another alarming property of image laundering, which appears to mask the unique artifacts exploited by forensic detectors to solve the camera model identification task, strongly undermining their performance. Our experimental code is available at https://github.com/polimi-ispl/synthetic-image-detection.

  • 3 authors
·
Jul 15, 2024

Fine-Tuning and Training of DenseNet for Histopathology Image Representation Using TCGA Diagnostic Slides

Feature vectors provided by pre-trained deep artificial neural networks have become a dominant source for image representation in recent literature. Their contribution to the performance of image analysis can be improved through finetuning. As an ultimate solution, one might even train a deep network from scratch with the domain-relevant images, a highly desirable option which is generally impeded in pathology by lack of labeled images and the computational expense. In this study, we propose a new network, namely KimiaNet, that employs the topology of the DenseNet with four dense blocks, fine-tuned and trained with histopathology images in different configurations. We used more than 240,000 image patches with 1000x1000 pixels acquired at 20x magnification through our proposed "highcellularity mosaic" approach to enable the usage of weak labels of 7,126 whole slide images of formalin-fixed paraffin-embedded human pathology samples publicly available through the The Cancer Genome Atlas (TCGA) repository. We tested KimiaNet using three public datasets, namely TCGA, endometrial cancer images, and colorectal cancer images by evaluating the performance of search and classification when corresponding features of different networks are used for image representation. As well, we designed and trained multiple convolutional batch-normalized ReLU (CBR) networks. The results show that KimiaNet provides superior results compared to the original DenseNet and smaller CBR networks when used as feature extractor to represent histopathology images.

  • 22 authors
·
Jan 19, 2021

On the Importance of Text Preprocessing for Multimodal Representation Learning and Pathology Report Generation

Vision-language models in pathology enable multimodal case retrieval and automated report generation. Many of the models developed so far, however, have been trained on pathology reports that include information which cannot be inferred from paired whole slide images (e.g., patient history), potentially leading to hallucinated sentences in generated reports. To this end, we investigate how the selection of information from pathology reports for vision-language modeling affects the quality of the multimodal representations and generated reports. More concretely, we compare a model trained on full reports against a model trained on preprocessed reports that only include sentences describing the cell and tissue appearances based on the H&E-stained slides. For the experiments, we built upon the BLIP-2 framework and used a cutaneous melanocytic lesion dataset of 42,433 H&E-stained whole slide images and 19,636 corresponding pathology reports. Model performance was assessed using image-to-text and text-to-image retrieval, as well as qualitative evaluation of the generated reports by an expert pathologist. Our results demonstrate that text preprocessing prevents hallucination in report generation. Despite the improvement in the quality of the generated reports, training the vision-language model on full reports showed better cross-modal retrieval performance.

  • 6 authors
·
Feb 26, 2025

PixCell: A generative foundation model for digital histopathology images

The digitization of histology slides has revolutionized pathology, providing massive datasets for cancer diagnosis and research. Contrastive self-supervised and vision-language models have been shown to effectively mine large pathology datasets to learn discriminative representations. On the other hand, generative models, capable of synthesizing realistic and diverse images, present a compelling solution to address unique problems in pathology that involve synthesizing images; overcoming annotated data scarcity, enabling privacy-preserving data sharing, and performing inherently generative tasks, such as virtual staining. We introduce PixCell, the first diffusion-based generative foundation model for histopathology. We train PixCell on PanCan-30M, a vast, diverse dataset derived from 69,184 H\&E-stained whole slide images covering various cancer types. We employ a progressive training strategy and a self-supervision-based conditioning that allows us to scale up training without any annotated data. PixCell generates diverse and high-quality images across multiple cancer types, which we find can be used in place of real data to train a self-supervised discriminative model. Synthetic images shared between institutions are subject to fewer regulatory barriers than would be the case with real clinical images. Furthermore, we showcase the ability to precisely control image generation using a small set of annotated images, which can be used for both data augmentation and educational purposes. Testing on a cell segmentation task, a mask-guided PixCell enables targeted data augmentation, improving downstream performance. Finally, we demonstrate PixCell's ability to use H\&E structural staining to infer results from molecular marker studies; we use this capability to infer IHC staining from H\&E images. Our trained models are publicly released to accelerate research in computational pathology.

Learned representation-guided diffusion models for large-image generation

To synthesize high-fidelity samples, diffusion models typically require auxiliary data to guide the generation process. However, it is impractical to procure the painstaking patch-level annotation effort required in specialized domains like histopathology and satellite imagery; it is often performed by domain experts and involves hundreds of millions of patches. Modern-day self-supervised learning (SSL) representations encode rich semantic and visual information. In this paper, we posit that such representations are expressive enough to act as proxies to fine-grained human labels. We introduce a novel approach that trains diffusion models conditioned on embeddings from SSL. Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images. In addition, we construct larger images by assembling spatially consistent patches inferred from SSL embeddings, preserving long-range dependencies. Augmenting real data by generating variations of real images improves downstream classifier accuracy for patch-level and larger, image-scale classification tasks. Our models are effective even on datasets not encountered during training, demonstrating their robustness and generalizability. Generating images from learned embeddings is agnostic to the source of the embeddings. The SSL embeddings used to generate a large image can either be extracted from a reference image, or sampled from an auxiliary model conditioned on any related modality (e.g. class labels, text, genomic data). As proof of concept, we introduce the text-to-large image synthesis paradigm where we successfully synthesize large pathology and satellite images out of text descriptions.

  • 7 authors
·
Dec 12, 2023

Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images

Creating high-quality and realistic images is now possible thanks to the impressive advancements in image generation. A description in natural language of your desired output is all you need to obtain breathtaking results. However, as the use of generative models grows, so do concerns about the propagation of malicious content and misinformation. Consequently, the research community is actively working on the development of novel fake detection techniques, primarily focusing on low-level features and possible fingerprints left by generative models during the image generation process. In a different vein, in our work, we leverage human semantic knowledge to investigate the possibility of being included in frameworks of fake image detection. To achieve this, we collect a novel dataset of partially manipulated images using diffusion models and conduct an eye-tracking experiment to record the eye movements of different observers while viewing real and fake stimuli. A preliminary statistical analysis is conducted to explore the distinctive patterns in how humans perceive genuine and altered images. Statistical findings reveal that, when perceiving counterfeit samples, humans tend to focus on more confined regions of the image, in contrast to the more dispersed observational pattern observed when viewing genuine images. Our dataset is publicly available at: https://github.com/aimagelab/unveiling-the-truth.

  • 4 authors
·
Mar 13, 2024

Improving Performance, Robustness, and Fairness of Radiographic AI Models with Finely-Controllable Synthetic Data

Achieving robust performance and fairness across diverse patient populations remains a challenge in developing clinically deployable deep learning models for diagnostic imaging. Synthetic data generation has emerged as a promising strategy to address limitations in dataset scale and diversity. We introduce RoentGen-v2, a text-to-image diffusion model for chest radiographs that enables fine-grained control over both radiographic findings and patient demographic attributes, including sex, age, and race/ethnicity. RoentGen-v2 is the first model to generate clinically plausible images with demographic conditioning, facilitating the creation of a large, demographically balanced synthetic dataset comprising over 565,000 images. We use this large synthetic dataset to evaluate optimal training pipelines for downstream disease classification models. In contrast to prior work that combines real and synthetic data naively, we propose an improved training strategy that leverages synthetic data for supervised pretraining, followed by fine-tuning on real data. Through extensive evaluation on over 137,000 chest radiographs from five institutions, we demonstrate that synthetic pretraining consistently improves model performance, generalization to out-of-distribution settings, and fairness across demographic subgroups. Across datasets, synthetic pretraining led to a 6.5% accuracy increase in the performance of downstream classification models, compared to a modest 2.7% increase when naively combining real and synthetic data. We observe this performance improvement simultaneously with the reduction of the underdiagnosis fairness gap by 19.3%. These results highlight the potential of synthetic imaging to advance equitable and generalizable medical deep learning under real-world data constraints. We open source our code, trained models, and synthetic dataset at https://github.com/StanfordMIMI/RoentGen-v2 .

  • 11 authors
·
Aug 22, 2025

RoentGen: Vision-Language Foundation Model for Chest X-ray Generation

Multimodal models trained on large natural image-text pair datasets have exhibited astounding abilities in generating high-quality images. Medical imaging data is fundamentally different to natural images, and the language used to succinctly capture relevant details in medical data uses a different, narrow but semantically rich, domain-specific vocabulary. Not surprisingly, multi-modal models trained on natural image-text pairs do not tend to generalize well to the medical domain. Developing generative imaging models faithfully representing medical concepts while providing compositional diversity could mitigate the existing paucity of high-quality, annotated medical imaging datasets. In this work, we develop a strategy to overcome the large natural-medical distributional shift by adapting a pre-trained latent diffusion model on a corpus of publicly available chest x-rays (CXR) and their corresponding radiology (text) reports. We investigate the model's ability to generate high-fidelity, diverse synthetic CXR conditioned on text prompts. We assess the model outputs quantitatively using image quality metrics, and evaluate image quality and text-image alignment by human domain experts. We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images, and that the output can be controlled to a new extent by using free-form text prompts including radiology-specific language. Fine-tuning this model on a fixed training set and using it as a data augmentation method, we measure a 5% improvement of a classifier trained jointly on synthetic and real images, and a 3% improvement when trained on a larger but purely synthetic training set. Finally, we observe that this fine-tuning distills in-domain knowledge in the text-encoder and can improve its representation capabilities of certain diseases like pneumothorax by 25%.

  • 10 authors
·
Nov 23, 2022

EndoPBR: Material and Lighting Estimation for Photorealistic Surgical Simulations via Physically-based Rendering

The lack of labeled datasets in 3D vision for surgical scenes inhibits the development of robust 3D reconstruction algorithms in the medical domain. Despite the popularity of Neural Radiance Fields and 3D Gaussian Splatting in the general computer vision community, these systems have yet to find consistent success in surgical scenes due to challenges such as non-stationary lighting and non-Lambertian surfaces. As a result, the need for labeled surgical datasets continues to grow. In this work, we introduce a differentiable rendering framework for material and lighting estimation from endoscopic images and known geometry. Compared to previous approaches that model lighting and material jointly as radiance, we explicitly disentangle these scene properties for robust and photorealistic novel view synthesis. To disambiguate the training process, we formulate domain-specific properties inherent in surgical scenes. Specifically, we model the scene lighting as a simple spotlight and material properties as a bidirectional reflectance distribution function, parameterized by a neural network. By grounding color predictions in the rendering equation, we can generate photorealistic images at arbitrary camera poses. We evaluate our method with various sequences from the Colonoscopy 3D Video Dataset and show that our method produces competitive novel view synthesis results compared with other approaches. Furthermore, we demonstrate that synthetic data can be used to develop 3D vision algorithms by finetuning a depth estimation model with our rendered outputs. Overall, we see that the depth estimation performance is on par with fine-tuning with the original real images.

  • 2 authors
·
Feb 27, 2025

CIFAKE: Image Classification and Explainable Identification of AI-Generated Synthetic Images

Recent technological advances in synthetic data have enabled the generation of images with such high quality that human beings cannot tell the difference between real-life photographs and Artificial Intelligence (AI) generated images. Given the critical necessity of data reliability and authentication, this article proposes to enhance our ability to recognise AI-generated images through computer vision. Initially, a synthetic dataset is generated that mirrors the ten classes of the already available CIFAR-10 dataset with latent diffusion which provides a contrasting set of images for comparison to real photographs. The model is capable of generating complex visual attributes, such as photorealistic reflections in water. The two sets of data present as a binary classification problem with regard to whether the photograph is real or generated by AI. This study then proposes the use of a Convolutional Neural Network (CNN) to classify the images into two categories; Real or Fake. Following hyperparameter tuning and the training of 36 individual network topologies, the optimal approach could correctly classify the images with 92.98% accuracy. Finally, this study implements explainable AI via Gradient Class Activation Mapping to explore which features within the images are useful for classification. Interpretation reveals interesting concepts within the image, in particular, noting that the actual entity itself does not hold useful information for classification; instead, the model focuses on small visual imperfections in the background of the images. The complete dataset engineered for this study, referred to as the CIFAKE dataset, is made publicly available to the research community for future work.

  • 2 authors
·
Mar 24, 2023

DIRE for Diffusion-Generated Image Detection

Diffusion models have shown remarkable success in visual synthesis, but have also raised concerns about potential abuse for malicious purposes. In this paper, we seek to build a detector for telling apart real images from diffusion-generated images. We find that existing detectors struggle to detect images generated by diffusion models, even if we include generated images from a specific diffusion model in their training data. To address this issue, we propose a novel image representation called DIffusion Reconstruction Error (DIRE), which measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model. We observe that diffusion-generated images can be approximately reconstructed by a diffusion model while real images cannot. It provides a hint that DIRE can serve as a bridge to distinguish generated and real images. DIRE provides an effective way to detect images generated by most diffusion models, and it is general for detecting generated images from unseen diffusion models and robust to various perturbations. Furthermore, we establish a comprehensive diffusion-generated benchmark including images generated by eight diffusion models to evaluate the performance of diffusion-generated image detectors. Extensive experiments on our collected benchmark demonstrate that DIRE exhibits superiority over previous generated-image detectors. The code and dataset are available at https://github.com/ZhendongWang6/DIRE.

  • 7 authors
·
Mar 16, 2023

ROOM: A Physics-Based Continuum Robot Simulator for Photorealistic Medical Datasets Generation

Continuum robots are advancing bronchoscopy procedures by accessing complex lung airways and enabling targeted interventions. However, their development is limited by the lack of realistic training and test environments: Real data is difficult to collect due to ethical constraints and patient safety concerns, and developing autonomy algorithms requires realistic imaging and physical feedback. We present ROOM (Realistic Optical Observation in Medicine), a comprehensive simulation framework designed for generating photorealistic bronchoscopy training data. By leveraging patient CT scans, our pipeline renders multi-modal sensor data including RGB images with realistic noise and light specularities, metric depth maps, surface normals, optical flow and point clouds at medically relevant scales. We validate the data generated by ROOM in two canonical tasks for medical robotics -- multi-view pose estimation and monocular depth estimation, demonstrating diverse challenges that state-of-the-art methods must overcome to transfer to these medical settings. Furthermore, we show that the data produced by ROOM can be used to fine-tune existing depth estimation models to overcome these challenges, also enabling other downstream applications such as navigation. We expect that ROOM will enable large-scale data generation across diverse patient anatomies and procedural scenarios that are challenging to capture in clinical settings. Code and data: https://github.com/iamsalvatore/room.

  • 7 authors
·
Sep 16, 2025 2

Dataset and Benchmark for Enhancing Critical Retained Foreign Object Detection

Critical retained foreign objects (RFOs), including surgical instruments like sponges and needles, pose serious patient safety risks and carry significant financial and legal implications for healthcare institutions. Detecting critical RFOs using artificial intelligence remains challenging due to their rarity and the limited availability of chest X-ray datasets that specifically feature critical RFOs cases. Existing datasets only contain non-critical RFOs, like necklace or zipper, further limiting their utility for developing clinically impactful detection algorithms. To address these limitations, we introduce "Hopkins RFOs Bench", the first and largest dataset of its kind, containing 144 chest X-ray images of critical RFO cases collected over 18 years from the Johns Hopkins Health System. Using this dataset, we benchmark several state-of-the-art object detection models, highlighting the need for enhanced detection methodologies for critical RFO cases. Recognizing data scarcity challenges, we further explore image synthetic methods to bridge this gap. We evaluate two advanced synthetic image methods, DeepDRR-RFO, a physics-based method, and RoentGen-RFO, a diffusion-based method, for creating realistic radiographs featuring critical RFOs. Our comprehensive analysis identifies the strengths and limitations of each synthetic method, providing insights into effectively utilizing synthetic data to enhance model training. The Hopkins RFOs Bench and our findings significantly advance the development of reliable, generalizable AI-driven solutions for detecting critical RFOs in clinical chest X-rays.

  • 16 authors
·
Jul 9, 2025

Reducing Domain Gap with Diffusion-Based Domain Adaptation for Cell Counting

Generating realistic synthetic microscopy images is critical for training deep learning models in label-scarce environments, such as cell counting with many cells per image. However, traditional domain adaptation methods often struggle to bridge the domain gap when synthetic images lack the complex textures and visual patterns of real samples. In this work, we adapt the Inversion-Based Style Transfer (InST) framework originally designed for artistic style transfer to biomedical microscopy images. Our method combines latent-space Adaptive Instance Normalization with stochastic inversion in a diffusion model to transfer the style from real fluorescence microscopy images to synthetic ones, while weakly preserving content structure. We evaluate the effectiveness of our InST-based synthetic dataset for downstream cell counting by pre-training and fine-tuning EfficientNet-B0 models on various data sources, including real data, hard-coded synthetic data, and the public Cell200-s dataset. Models trained with our InST-synthesized images achieve up to 37\% lower Mean Absolute Error (MAE) compared to models trained on hard-coded synthetic data, and a 52\% reduction in MAE compared to models trained on Cell200-s (from 53.70 to 25.95 MAE). Notably, our approach also outperforms models trained on real data alone (25.95 vs. 27.74 MAE). Further improvements are achieved when combining InST-synthesized data with lightweight domain adaptation techniques such as DACS with CutMix. These findings demonstrate that InST-based style transfer most effectively reduces the domain gap between synthetic and real microscopy data. Our approach offers a scalable path for enhancing cell counting performance while minimizing manual labeling effort. The source code and resources are publicly available at: https://github.com/MohammadDehghan/InST-Microscopy.

  • 2 authors
·
Dec 12, 2025

Novel quantitative indicators of digital ophthalmoscopy image quality

With the advent of smartphone indirect ophthalmoscopy, teleophthalmology - the use of specialist ophthalmology assets at a distance from the patient - has experienced a breakthrough, promising enormous benefits especially for healthcare in distant, inaccessible or opthalmologically underserved areas, where specialists are either unavailable or too few in number. However, accurate teleophthalmology requires high-quality ophthalmoscopic imagery. This paper considers three feature families - statistical metrics, gradient-based metrics and wavelet transform coefficient derived indicators - as possible metrics to identify unsharp or blurry images. By using standard machine learning techniques, the suitability of these features for image quality assessment is confirmed, albeit on a rather small data set. With the increased availability and decreasing cost of digital ophthalmoscopy on one hand and the increased prevalence of diabetic retinopathy worldwide on the other, creating tools that can determine whether an image is likely to be diagnostically suitable can play a significant role in accelerating and streamlining the teleophthalmology process. This paper highlights the need for more research in this area, including the compilation of a diverse database of ophthalmoscopic imagery, annotated with quality markers, to train the Point of Acquisition error detection algorithms of the future.

  • 1 authors
·
Mar 6, 2019

Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy

Synthetic Data Generation (SDG) based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered by overcoming privacy barriers that currently render clinical data sharing difficult. This is the key to accelerating the development of digital tools contributing to enhanced patient safety. Such tools include robust data-driven clinical decision support systems, and example-based digital training tools that will enable healthcare professionals to improve their diagnostic performance for enhanced patient safety. This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images. Its scientific contributions include a) a novel protocol for the systematic Clinical Evaluation of Medical Image Synthesis (CEMIS); b) a novel variational autoencoder-based model for the generation of high-resolution synthetic WCE images; and c) a comprehensive evaluation of the synthetic images using the CEMIS protocol by 10 international WCE specialists, in terms of image quality, diversity, and realism, as well as their utility for clinical decision-making. The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models. Concludingly, CEMIS can serve as a reference for future research on medical image-generation techniques, while the adaptation/extension of the architecture of TIDE-II to other imaging domains can be promising.

  • 13 authors
·
Oct 31, 2024

SynthRAD2023 Grand Challenge dataset: generating synthetic CT for radiotherapy

Purpose: Medical imaging has become increasingly important in diagnosing and treating oncological patients, particularly in radiotherapy. Recent advances in synthetic computed tomography (sCT) generation have increased interest in public challenges to provide data and evaluation metrics for comparing different approaches openly. This paper describes a dataset of brain and pelvis computed tomography (CT) images with rigidly registered CBCT and MRI images to facilitate the development and evaluation of sCT generation for radiotherapy planning. Acquisition and validation methods: The dataset consists of CT, CBCT, and MRI of 540 brains and 540 pelvic radiotherapy patients from three Dutch university medical centers. Subjects' ages ranged from 3 to 93 years, with a mean age of 60. Various scanner models and acquisition settings were used across patients from the three data-providing centers. Details are available in CSV files provided with the datasets. Data format and usage notes: The data is available on Zenodo (https://doi.org/10.5281/zenodo.7260705) under the SynthRAD2023 collection. The images for each subject are available in nifti format. Potential applications: This dataset will enable the evaluation and development of image synthesis algorithms for radiotherapy purposes on a realistic multi-center dataset with varying acquisition protocols. Synthetic CT generation has numerous applications in radiation therapy, including diagnosis, treatment planning, treatment monitoring, and surgical planning.

  • 9 authors
·
Mar 28, 2023

MedShift: Implicit Conditional Transport for X-Ray Domain Adaptation

Synthetic medical data offers a scalable solution for training robust models, but significant domain gaps limit its generalizability to real-world clinical settings. This paper addresses the challenge of cross-domain translation between synthetic and real X-ray images of the head, focusing on bridging discrepancies in attenuation behavior, noise characteristics, and soft tissue representation. We propose MedShift, a unified class-conditional generative model based on Flow Matching and Schrodinger Bridges, which enables high-fidelity, unpaired image translation across multiple domains. Unlike prior approaches that require domain-specific training or rely on paired data, MedShift learns a shared domain-agnostic latent space and supports seamless translation between any pair of domains seen during training. We introduce X-DigiSkull, a new dataset comprising aligned synthetic and real skull X-rays under varying radiation doses, to benchmark domain translation models. Experimental results demonstrate that, despite its smaller model size compared to diffusion-based approaches, MedShift offers strong performance and remains flexible at inference time, as it can be tuned to prioritize either perceptual fidelity or structural consistency, making it a scalable and generalizable solution for domain adaptation in medical imaging. The code and dataset are available at https://caetas.github.io/medshift.html

  • 4 authors
·
Aug 29, 2025

ZoomLDM: Latent Diffusion Model for multi-scale image generation

Diffusion models have revolutionized image generation, yet several challenges restrict their application to large-image domains, such as digital pathology and satellite imagery. Given that it is infeasible to directly train a model on 'whole' images from domains with potential gigapixel sizes, diffusion-based generative methods have focused on synthesizing small, fixed-size patches extracted from these images. However, generating small patches has limited applicability since patch-based models fail to capture the global structures and wider context of large images, which can be crucial for synthesizing (semantically) accurate samples. To overcome this limitation, we present ZoomLDM, a diffusion model tailored for generating images across multiple scales. Central to our approach is a novel magnification-aware conditioning mechanism that utilizes self-supervised learning (SSL) embeddings and allows the diffusion model to synthesize images at different 'zoom' levels, i.e., fixed-size patches extracted from large images at varying scales. ZoomLDM synthesizes coherent histopathology images that remain contextually accurate and detailed at different zoom levels, achieving state-of-the-art image generation quality across all scales and excelling in the data-scarce setting of generating thumbnails of entire large images. The multi-scale nature of ZoomLDM unlocks additional capabilities in large image generation, enabling computationally tractable and globally coherent image synthesis up to 4096 times 4096 pixels and 4times super-resolution. Additionally, multi-scale features extracted from ZoomLDM are highly effective in multiple instance learning experiments.

Multi-view X-ray Image Synthesis with Multiple Domain Disentanglement from CT Scans

X-ray images play a vital role in the intraoperative processes due to their high resolution and fast imaging speed and greatly promote the subsequent segmentation, registration and reconstruction. However, over-dosed X-rays superimpose potential risks to human health to some extent. Data-driven algorithms from volume scans to X-ray images are restricted by the scarcity of paired X-ray and volume data. Existing methods are mainly realized by modelling the whole X-ray imaging procedure. In this study, we propose a learning-based approach termed CT2X-GAN to synthesize the X-ray images in an end-to-end manner using the content and style disentanglement from three different image domains. Our method decouples the anatomical structure information from CT scans and style information from unpaired real X-ray images/ digital reconstructed radiography (DRR) images via a series of decoupling encoders. Additionally, we introduce a novel consistency regularization term to improve the stylistic resemblance between synthesized X-ray images and real X-ray images. Meanwhile, we also impose a supervised process by computing the similarity of computed real DRR and synthesized DRR images. We further develop a pose attention module to fully strengthen the comprehensive information in the decoupled content code from CT scans, facilitating high-quality multi-view image synthesis in the lower 2D space. Extensive experiments were conducted on the publicly available CTSpine1K dataset and achieved 97.8350, 0.0842 and 3.0938 in terms of FID, KID and defined user-scored X-ray similarity, respectively. In comparison with 3D-aware methods (pi-GAN, EG3D), CT2X-GAN is superior in improving the synthesis quality and realistic to the real X-ray images.

  • 9 authors
·
Apr 18, 2024

SynthRAD2025 Grand Challenge dataset: generating synthetic CTs for radiotherapy

Medical imaging is essential in modern radiotherapy, supporting diagnosis, treatment planning, and monitoring. Synthetic imaging, particularly synthetic computed tomography (sCT), is gaining traction in radiotherapy. The SynthRAD2025 dataset and Grand Challenge promote advancements in sCT generation by providing a benchmarking platform for algorithms using cone-beam CT (CBCT) and magnetic resonance imaging (MRI). The dataset includes 2362 cases: 890 MRI-CT and 1472 CBCT-CT pairs from head-and-neck, thoracic, and abdominal cancer patients treated at five European university medical centers (UMC Groningen, UMC Utrecht, Radboud UMC, LMU University Hospital Munich, and University Hospital of Cologne). Data were acquired with diverse scanners and protocols. Pre-processing, including rigid and deformable image registration, ensures high-quality, modality-aligned images. Extensive quality assurance validates image consistency and usability. All imaging data is provided in MetaImage (.mha) format, ensuring compatibility with medical image processing tools. Metadata, including acquisition parameters and registration details, is available in structured CSV files. To maintain dataset integrity, SynthRAD2025 is divided into training (65%), validation (10%), and test (25%) sets. The dataset is accessible at https://doi.org/10.5281/zenodo.14918089 under the SynthRAD2025 collection. This dataset supports benchmarking and the development of synthetic imaging techniques for radiotherapy applications. Use cases include sCT generation for MRI-only and MR-guided photon/proton therapy, CBCT-based dose calculations, and adaptive radiotherapy workflows. By integrating diverse acquisition settings, SynthRAD2025 fosters robust, generalizable image synthesis algorithms, advancing personalized cancer care and adaptive radiotherapy.

  • 19 authors
·
Feb 24, 2025

SR-CACO-2: A Dataset for Confocal Fluorescence Microscopy Image Super-Resolution

Confocal fluorescence microscopy is one of the most accessible and widely used imaging techniques for the study of biological processes. Scanning confocal microscopy allows the capture of high-quality images from 3D samples, yet suffers from well-known limitations such as photobleaching and phototoxicity of specimens caused by intense light exposure, which limits its use in some applications, especially for living cells. Cellular damage can be alleviated by changing imaging parameters to reduce light exposure, often at the expense of image quality. Machine/deep learning methods for single-image super-resolution (SISR) can be applied to restore image quality by upscaling lower-resolution (LR) images to produce high-resolution images (HR). These SISR methods have been successfully applied to photo-realistic images due partly to the abundance of publicly available data. In contrast, the lack of publicly available data partly limits their application and success in scanning confocal microscopy. In this paper, we introduce a large scanning confocal microscopy dataset named SR-CACO-2 that is comprised of low- and high-resolution image pairs marked for three different fluorescent markers. It allows the evaluation of performance of SISR methods on three different upscaling levels (X2, X4, X8). SR-CACO-2 contains the human epithelial cell line Caco-2 (ATCC HTB-37), and it is composed of 22 tiles that have been translated in the form of 9,937 image patches for experiments with SISR methods. Given the new SR-CACO-2 dataset, we also provide benchmarking results for 15 state-of-the-art methods that are representative of the main SISR families. Results show that these methods have limited success in producing high-resolution textures, indicating that SR-CACO-2 represents a challenging problem. Our dataset, code and pretrained weights are available: https://github.com/sbelharbi/sr-caco-2.

  • 6 authors
·
Jun 13, 2024

NSARM: Next-Scale Autoregressive Modeling for Robust Real-World Image Super-Resolution

Most recent real-world image super-resolution (Real-ISR) methods employ pre-trained text-to-image (T2I) diffusion models to synthesize the high-quality image either from random Gaussian noise, which yields realistic results but is slow due to iterative denoising, or directly from the input low-quality image, which is efficient but at the price of lower output quality. These approaches train ControlNet or LoRA modules while keeping the pre-trained model fixed, which often introduces over-enhanced artifacts and hallucinations, suffering from the robustness to inputs of varying degradations. Recent visual autoregressive (AR) models, such as pre-trained Infinity, can provide strong T2I generation capabilities while offering superior efficiency by using the bitwise next-scale prediction strategy. Building upon next-scale prediction, we introduce a robust Real-ISR framework, namely Next-Scale Autoregressive Modeling (NSARM). Specifically, we train NSARM in two stages: a transformation network is first trained to map the input low-quality image to preliminary scales, followed by an end-to-end full-model fine-tuning. Such a comprehensive fine-tuning enhances the robustness of NSARM in Real-ISR tasks without compromising its generative capability. Extensive quantitative and qualitative evaluations demonstrate that as a pure AR model, NSARM achieves superior visual results over existing Real-ISR methods while maintaining a fast inference speed. Most importantly, it demonstrates much higher robustness to the quality of input images, showing stronger generalization performance. Project page: https://github.com/Xiangtaokong/NSARM

  • 5 authors
·
Oct 1, 2025

Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation

Recent advancements in medical imaging and artificial intelligence (AI) have greatly enhanced diagnostic capabilities, but the development of effective deep learning (DL) models is still constrained by the lack of high-quality annotated datasets. The traditional manual annotation process by medical experts is time- and resource-intensive, limiting the scalability of these datasets. In this work, we introduce a robust and versatile framework that combines AI and crowdsourcing to improve both the quality and quantity of medical image datasets across different modalities. Our approach utilises a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently. By integrating the MedSAM segmentation AI with this platform, we accelerate the annotation process while maintaining expert-level quality through an algorithm that merges crowd-labelled images. Additionally, we employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features. These methods are combined into a cohesive framework designed to produce an enhanced dataset, which can serve as a universal pre-processing pipeline to boost the training of any medical deep learning segmentation model. Our results demonstrate that this framework significantly improves model performance, especially when training data is limited.

  • 10 authors
·
Sep 4, 2024

Next Token Is Enough: Realistic Image Quality and Aesthetic Scoring with Multimodal Large Language Model

The rapid expansion of mobile internet has resulted in a substantial increase in user-generated content (UGC) images, thereby making the thorough assessment of UGC images both urgent and essential. Recently, multimodal large language models (MLLMs) have shown great potential in image quality assessment (IQA) and image aesthetic assessment (IAA). Despite this progress, effectively scoring the quality and aesthetics of UGC images still faces two main challenges: 1) A single score is inadequate to capture the hierarchical human perception. 2) How to use MLLMs to output numerical scores, such as mean opinion scores (MOS), remains an open question. To address these challenges, we introduce a novel dataset, named Realistic image Quality and Aesthetic (RealQA), including 14,715 UGC images, each of which is annoted with 10 fine-grained attributes. These attributes span three levels: low level (e.g., image clarity), middle level (e.g., subject integrity) and high level (e.g., composition). Besides, we conduct a series of in-depth and comprehensive investigations into how to effectively predict numerical scores using MLLMs. Surprisingly, by predicting just two extra significant digits, the next token paradigm can achieve SOTA performance. Furthermore, with the help of chain of thought (CoT) combined with the learnt fine-grained attributes, the proposed method can outperform SOTA methods on five public datasets for IQA and IAA with superior interpretability and show strong zero-shot generalization for video quality assessment (VQA). The code and dataset will be released.

  • 5 authors
·
Mar 8, 2025 2

Vision-Language Generative Model for View-Specific Chest X-ray Generation

Synthetic medical data generation has opened up new possibilities in the healthcare domain, offering a powerful tool for simulating clinical scenarios, enhancing diagnostic and treatment quality, gaining granular medical knowledge, and accelerating the development of unbiased algorithms. In this context, we present a novel approach called ViewXGen, designed to overcome the limitations of existing methods that rely on general domain pipelines using only radiology reports to generate frontal-view chest X-rays. Our approach takes into consideration the diverse view positions found in the dataset, enabling the generation of chest X-rays with specific views, which marks a significant advancement in the field. To achieve this, we introduce a set of specially designed tokens for each view position, tailoring the generation process to the user's preferences. Furthermore, we leverage multi-view chest X-rays as input, incorporating valuable information from different views within the same study. This integration rectifies potential errors and contributes to faithfully capturing abnormal findings in chest X-ray generation. To validate the effectiveness of our approach, we conducted statistical analyses, evaluating its performance in a clinical efficacy metric on the MIMIC-CXR dataset. Also, human evaluation demonstrates the remarkable capabilities of ViewXGen, particularly in producing realistic view-specific X-rays that closely resemble the original images.

  • 8 authors
·
Feb 23, 2023

PIE: Simulating Disease Progression via Progressive Image Editing

Disease progression simulation is a crucial area of research that has significant implications for clinical diagnosis, prognosis, and treatment. One major challenge in this field is the lack of continuous medical imaging monitoring of individual patients over time. To address this issue, we develop a novel framework termed Progressive Image Editing (PIE) that enables controlled manipulation of disease-related image features, facilitating precise and realistic disease progression simulation. Specifically, we leverage recent advancements in text-to-image generative models to simulate disease progression accurately and personalize it for each patient. We theoretically analyze the iterative refining process in our framework as a gradient descent with an exponentially decayed learning rate. To validate our framework, we conduct experiments in three medical imaging domains. Our results demonstrate the superiority of PIE over existing methods such as Stable Diffusion Walk and Style-Based Manifold Extrapolation based on CLIP score (Realism) and Disease Classification Confidence (Alignment). Our user study collected feedback from 35 veteran physicians to assess the generated progressions. Remarkably, 76.2% of the feedback agrees with the fidelity of the generated progressions. To our best knowledge, PIE is the first of its kind to generate disease progression images meeting real-world standards. It is a promising tool for medical research and clinical practice, potentially allowing healthcare providers to model disease trajectories over time, predict future treatment responses, and improve patient outcomes.

  • 6 authors
·
Sep 20, 2023 1

Bridging the Gap: Studio-like Avatar Creation from a Monocular Phone Capture

Creating photorealistic avatars for individuals traditionally involves extensive capture sessions with complex and expensive studio devices like the LightStage system. While recent strides in neural representations have enabled the generation of photorealistic and animatable 3D avatars from quick phone scans, they have the capture-time lighting baked-in, lack facial details and have missing regions in areas such as the back of the ears. Thus, they lag in quality compared to studio-captured avatars. In this paper, we propose a method that bridges this gap by generating studio-like illuminated texture maps from short, monocular phone captures. We do this by parameterizing the phone texture maps using the W^+ space of a StyleGAN2, enabling near-perfect reconstruction. Then, we finetune a StyleGAN2 by sampling in the W^+ parameterized space using a very small set of studio-captured textures as an adversarial training signal. To further enhance the realism and accuracy of facial details, we super-resolve the output of the StyleGAN2 using carefully designed diffusion model that is guided by image gradients of the phone-captured texture map. Once trained, our method excels at producing studio-like facial texture maps from casual monocular smartphone videos. Demonstrating its capabilities, we showcase the generation of photorealistic, uniformly lit, complete avatars from monocular phone captures. http://shahrukhathar.github.io/2024/07/22/Bridging.html{The project page can be found here.}

  • 5 authors
·
Jul 28, 2024 1

MedImageInsight: An Open-Source Embedding Model for General Domain Medical Imaging

In this work, we present MedImageInsight, an open-source medical imaging embedding model. MedImageInsight is trained on medical images with associated text and labels across a diverse collection of domains, including X-Ray, CT, MRI, dermoscopy, OCT, fundus photography, ultrasound, histopathology, and mammography. Rigorous evaluations demonstrate MedImageInsight's ability to achieve state-of-the-art (SOTA) or human expert level performance across classification, image-image search, and fine-tuning tasks. Specifically, on public datasets, MedImageInsight achieves SOTA in CT 3D medical image retrieval, as well as SOTA in disease classification and search for chest X-ray, dermatology, and OCT imaging. Furthermore, MedImageInsight achieves human expert performance in bone age estimation (on both public and partner data), as well as AUC above 0.9 in most other domains. When paired with a text decoder, MedImageInsight achieves near SOTA level single image report findings generation with less than 10\% the parameters of other models. Compared to fine-tuning GPT-4o with only MIMIC-CXR data for the same task, MedImageInsight outperforms in clinical metrics, but underperforms on lexical metrics where GPT-4o sets a new SOTA. Importantly for regulatory purposes, MedImageInsight can generate ROC curves, adjust sensitivity and specificity based on clinical need, and provide evidence-based decision support through image-image search (which can also enable retrieval augmented generation). In an independent clinical evaluation of image-image search in chest X-ray, MedImageInsight outperformed every other publicly available foundation model evaluated by large margins (over 6 points AUC), and significantly outperformed other models in terms of AI fairness (across age and gender). We hope releasing MedImageInsight will help enhance collective progress in medical imaging AI research and development.

  • 31 authors
·
Oct 9, 2024

Domain-specific optimization and diverse evaluation of self-supervised models for histopathology

Task-specific deep learning models in histopathology offer promising opportunities for improving diagnosis, clinical research, and precision medicine. However, development of such models is often limited by availability of high-quality data. Foundation models in histopathology that learn general representations across a wide range of tissue types, diagnoses, and magnifications offer the potential to reduce the data, compute, and technical expertise necessary to develop task-specific deep learning models with the required level of model performance. In this work, we describe the development and evaluation of foundation models for histopathology via self-supervised learning (SSL). We first establish a diverse set of benchmark tasks involving 17 unique tissue types and 12 unique cancer types and spanning different optimal magnifications and task types. Next, we use this benchmark to explore and evaluate histopathology-specific SSL methods followed by further evaluation on held out patch-level and weakly supervised tasks. We found that standard SSL methods thoughtfully applied to histopathology images are performant across our benchmark tasks and that domain-specific methodological improvements can further increase performance. Our findings reinforce the value of using domain-specific SSL methods in pathology, and establish a set of high quality foundation models to enable further research across diverse applications.

  • 16 authors
·
Oct 19, 2023

A New Benchmark: On the Utility of Synthetic Data with Blender for Bare Supervised Learning and Downstream Domain Adaptation

Deep learning in computer vision has achieved great success with the price of large-scale labeled training data. However, exhaustive data annotation is impracticable for each task of all domains of interest, due to high labor costs and unguaranteed labeling accuracy. Besides, the uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist. All these nuisances may hinder the verification of typical theories and exposure to new findings. To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization. We in this work push forward along this line by doing profound and extensive research on bare supervised learning and downstream domain adaptation. Specifically, under the well-controlled, IID data setting enabled by 3D rendering, we systematically verify the typical, important learning insights, e.g., shortcut learning, and discover the new laws of various data regimes and network architectures in generalization. We further investigate the effect of image formation factors on generalization, e.g., object scale, material texture, illumination, camera viewpoint, and background in a 3D scene. Moreover, we use the simulation-to-reality adaptation as a downstream task for comparing the transferability between synthetic and real data when used for pre-training, which demonstrates that synthetic data pre-training is also promising to improve real test results. Lastly, to promote future research, we develop a new large-scale synthetic-to-real benchmark for image classification, termed S2RDA, which provides more significant challenges for transfer from simulation to reality. The code and datasets are available at https://github.com/huitangtang/On_the_Utility_of_Synthetic_Data.

  • 2 authors
·
Mar 16, 2023

Skin-R1: Toward Trustworthy Clinical Reasoning for Dermatological Diagnosis

The emergence of vision-language models (VLMs) has opened new possibilities for clinical reasoning and has shown promising performance in dermatological diagnosis. However, their trustworthiness and clinical utility are often limited by three major factors: (1) Data heterogeneity, where diverse datasets lack consistent diagnostic labels and clinical concept annotations; (2) Absence of grounded diagnostic rationales, leading to a scarcity of reliable reasoning supervision; and (3) Limited scalability and generalization, as models trained on small, densely annotated datasets struggle to transfer nuanced reasoning to large, sparsely-annotated ones. To address these limitations, we propose SkinR1, a novel dermatological VLM that combines deep, textbook-based reasoning with the broad generalization capabilities of reinforcement learning (RL). SkinR1 systematically resolves the key challenges through a unified, end-to-end framework. First, we design a textbook-based reasoning generator that synthesizes high-fidelity, hierarchy-aware, and differential-diagnosis (DDx)-informed trajectories, providing reliable expert-level supervision. Second, we leverage the constructed trajectories for supervised fine-tuning (SFT) empowering the model with grounded reasoning ability. Third, we develop a novel RL paradigm that, by incorporating the hierarchical structure of diseases, effectively transfers these grounded reasoning patterns to large-scale, sparse data. Extensive experiments on multiple dermatology datasets demonstrate that SkinR1 achieves superior diagnostic accuracy. The ablation study demonstrates the importance of the reasoning foundation instilled by SFT.

  • 7 authors
·
Nov 18, 2025 1

ConsisSR: Delving Deep into Consistency in Diffusion-based Image Super-Resolution

Real-world image super-resolution (Real-ISR) aims at restoring high-quality (HQ) images from low-quality (LQ) inputs corrupted by unknown and complex degradations. In particular, pretrained text-to-image (T2I) diffusion models provide strong generative priors to reconstruct credible and intricate details. However, T2I generation focuses on semantic consistency while Real-ISR emphasizes pixel-level reconstruction, which hinders existing methods from fully exploiting diffusion priors. To address this challenge, we introduce ConsisSR to handle both semantic and pixel-level consistency. Specifically, compared to coarse-grained text prompts, we exploit the more powerful CLIP image embedding and effectively leverage both modalities through our Hybrid Prompt Adapter (HPA) for semantic guidance. Secondly, we introduce Time-aware Latent Augmentation (TALA) to mitigate the inherent gap between T2I generation and Real-ISR consistency requirements. By randomly mixing LQ and HQ latent inputs, our model not only handle timestep-specific diffusion noise but also refine the accumulated latent representations. Last but not least, our GAN-Embedding strategy employs the pretrained Real-ESRGAN model to refine the diffusion start point. This accelerates the inference process to 10 steps while preserving sampling quality, in a training-free manner. Our method demonstrates state-of-the-art performance among both full-scale and accelerated models. The code will be made publicly available.

  • 7 authors
·
Oct 17, 2024

A Scalable Pipeline Combining Procedural 3D Graphics and Guided Diffusion for Photorealistic Synthetic Training Data Generation in White Button Mushroom Segmentation

Industrial mushroom cultivation increasingly relies on computer vision for monitoring and automated harvesting. However, developing accurate detection and segmentation models requires large, precisely annotated datasets that are costly to produce. Synthetic data provides a scalable alternative, yet often lacks sufficient realism to generalize to real-world scenarios. This paper presents a novel workflow that integrates 3D rendering in Blender with a constrained diffusion model to automatically generate high-quality annotated, photorealistic synthetic images of Agaricus Bisporus mushrooms. This approach preserves full control over 3D scene configuration and annotations while achieving photorealism without the need for specialized computer graphics expertise. We release two synthetic datasets (each containing 6,000 images depicting over 250k mushroom instances) and evaluate Mask R-CNN models trained on them in a zero-shot setting. When tested on two independent real-world datasets (including a newly collected benchmark), our method achieves state-of-the-art segmentation performance (F1 = 0.859 on M18K), despite using only synthetic training data. Although the approach is demonstrated on Agaricus Bisporus mushrooms, the proposed pipeline can be readily adapted to other mushroom species or to other agricultural domains, such as fruit and leaf detection.

  • 2 authors
·
Dec 9, 2025