Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA projection-based framework for gradient-free and parallel learning
We present a feasibility-seeking approach to neural network training. This mathematical optimization framework is distinct from conventional gradient-based loss minimization and uses projection operators and iterative projection algorithms. We reformulate training as a large-scale feasibility problem: finding network parameters and states that satisfy local constraints derived from its elementary operations. Training then involves projecting onto these constraints, a local operation that can be parallelized across the network. We introduce PJAX, a JAX-based software framework that enables this paradigm. PJAX composes projection operators for elementary operations, automatically deriving the solution operators for the feasibility problems (akin to autodiff for derivatives). It inherently supports GPU/TPU acceleration, provides a familiar NumPy-like API, and is extensible. We train diverse architectures (MLPs, CNNs, RNNs) on standard benchmarks using PJAX, demonstrating its functionality and generality. Our results show that this approach is as a compelling alternative to gradient-based training, with clear advantages in parallelism and the ability to handle non-differentiable operations.
SCALAR: Scale-wise Controllable Visual Autoregressive Learning
Controllable image synthesis, which enables fine-grained control over generated outputs, has emerged as a key focus in visual generative modeling. However, controllable generation remains challenging for Visual Autoregressive (VAR) models due to their hierarchical, next-scale prediction style. Existing VAR-based methods often suffer from inefficient control encoding and disruptive injection mechanisms that compromise both fidelity and efficiency. In this work, we present SCALAR, a controllable generation method based on VAR, incorporating a novel Scale-wise Conditional Decoding mechanism. SCALAR leverages a pretrained image encoder to extract semantic control signal encodings, which are projected into scale-specific representations and injected into the corresponding layers of the VAR backbone. This design provides persistent and structurally aligned guidance throughout the generation process. Building on SCALAR, we develop SCALAR-Uni, a unified extension that aligns multiple control modalities into a shared latent space, supporting flexible multi-conditional guidance in a single model. Extensive experiments show that SCALAR achieves superior generation quality and control precision across various tasks.
Can Forward Gradient Match Backpropagation?
Forward Gradients - the idea of using directional derivatives in forward differentiation mode - have recently been shown to be utilizable for neural network training while avoiding problems generally associated with backpropagation gradient computation, such as locking and memorization requirements. The cost is the requirement to guess the step direction, which is hard in high dimensions. While current solutions rely on weighted averages over isotropic guess vector distributions, we propose to strongly bias our gradient guesses in directions that are much more promising, such as feedback obtained from small, local auxiliary networks. For a standard computer vision neural network, we conduct a rigorous study systematically covering a variety of combinations of gradient targets and gradient guesses, including those previously presented in the literature. We find that using gradients obtained from a local loss as a candidate direction drastically improves on random noise in Forward Gradient methods.
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made important advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another interesting type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. For low-rank matrices the Hessian of this loss can theoretically blow up, which creates challenges to analyze convergence of optimizaton methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss and convergence results for finite step size gradient descent under certain assumptions on the initial weights.
Augmented Sliced Wasserstein Distances
While theoretically appealing, the application of the Wasserstein distance to large-scale machine learning problems has been hampered by its prohibitive computational cost. The sliced Wasserstein distance and its variants improve the computational efficiency through the random projection, yet they suffer from low accuracy if the number of projections is not sufficiently large, because the majority of projections result in trivially small values. In this work, we propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs), constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks. It is derived from a key observation that (random) linear projections of samples residing on these hypersurfaces would translate to much more flexible nonlinear projections in the original sample space, so they can capture complex structures of the data distribution. We show that the hypersurfaces can be optimized by gradient ascent efficiently. We provide the condition under which the ASWD is a valid metric and show that this can be obtained by an injective neural network architecture. Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
Dreamguider: Improved Training free Diffusion-based Conditional Generation
Diffusion models have emerged as a formidable tool for training-free conditional generation.However, a key hurdle in inference-time guidance techniques is the need for compute-heavy backpropagation through the diffusion network for estimating the guidance direction. Moreover, these techniques often require handcrafted parameter tuning on a case-by-case basis. Although some recent works have introduced minimal compute methods for linear inverse problems, a generic lightweight guidance solution to both linear and non-linear guidance problems is still missing. To this end, we propose Dreamguider, a method that enables inference-time guidance without compute-heavy backpropagation through the diffusion network. The key idea is to regulate the gradient flow through a time-varying factor. Moreover, we propose an empirical guidance scale that works for a wide variety of tasks, hence removing the need for handcrafted parameter tuning. We further introduce an effective lightweight augmentation strategy that significantly boosts the performance during inference-time guidance. We present experiments using Dreamguider on multiple tasks across multiple datasets and models to show the effectiveness of the proposed modules. To facilitate further research, we will make the code public after the review process.
Restricted Orthogonal Gradient Projection for Continual Learning
Continual learning aims to avoid catastrophic forgetting and effectively leverage learned experiences to master new knowledge. Existing gradient projection approaches impose hard constraints on the optimization space for new tasks to minimize interference, which simultaneously hinders forward knowledge transfer. To address this issue, recent methods reuse frozen parameters with a growing network, resulting in high computational costs. Thus, it remains a challenge whether we can improve forward knowledge transfer for gradient projection approaches using a fixed network architecture. In this work, we propose the Restricted Orthogonal Gradient prOjection (ROGO) framework. The basic idea is to adopt a restricted orthogonal constraint allowing parameters optimized in the direction oblique to the whole frozen space to facilitate forward knowledge transfer while consolidating previous knowledge. Our framework requires neither data buffers nor extra parameters. Extensive experiments have demonstrated the superiority of our framework over several strong baselines. We also provide theoretical guarantees for our relaxing strategy.
Stochastic model-based minimization of weakly convex functions
We consider a family of algorithms that successively sample and minimize simple stochastic models of the objective function. We show that under reasonable conditions on approximation quality and regularity of the models, any such algorithm drives a natural stationarity measure to zero at the rate O(k^{-1/4}). As a consequence, we obtain the first complexity guarantees for the stochastic proximal point, proximal subgradient, and regularized Gauss-Newton methods for minimizing compositions of convex functions with smooth maps. The guiding principle, underlying the complexity guarantees, is that all algorithms under consideration can be interpreted as approximate descent methods on an implicit smoothing of the problem, given by the Moreau envelope. Specializing to classical circumstances, we obtain the long-sought convergence rate of the stochastic projected gradient method, without batching, for minimizing a smooth function on a closed convex set.
A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.
Prompt-tuning latent diffusion models for inverse problems
We propose a new method for solving imaging inverse problems using text-to-image latent diffusion models as general priors. Existing methods using latent diffusion models for inverse problems typically rely on simple null text prompts, which can lead to suboptimal performance. To address this limitation, we introduce a method for prompt tuning, which jointly optimizes the text embedding on-the-fly while running the reverse diffusion process. This allows us to generate images that are more faithful to the diffusion prior. In addition, we propose a method to keep the evolution of latent variables within the range space of the encoder, by projection. This helps to reduce image artifacts, a major problem when using latent diffusion models instead of pixel-based diffusion models. Our combined method, called P2L, outperforms both image- and latent-diffusion model-based inverse problem solvers on a variety of tasks, such as super-resolution, deblurring, and inpainting.
Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation
A diffusion model learns to predict a vector field of gradients. We propose to apply chain rule on the learned gradients, and back-propagate the score of a diffusion model through the Jacobian of a differentiable renderer, which we instantiate to be a voxel radiance field. This setup aggregates 2D scores at multiple camera viewpoints into a 3D score, and repurposes a pretrained 2D model for 3D data generation. We identify a technical challenge of distribution mismatch that arises in this application, and propose a novel estimation mechanism to resolve it. We run our algorithm on several off-the-shelf diffusion image generative models, including the recently released Stable Diffusion trained on the large-scale LAION dataset.
Maintaining Adversarial Robustness in Continuous Learning
Adversarial robustness is essential for security and reliability of machine learning systems. However, adversarial robustness enhanced by defense algorithms is easily erased as the neural network's weights update to learn new tasks. To address this vulnerability, it is essential to improve the capability of neural networks in terms of robust continual learning. Specially, we propose a novel gradient projection technique that effectively stabilizes sample gradients from previous data by orthogonally projecting back-propagation gradients onto a crucial subspace before using them for weight updates. This technique can maintaining robustness by collaborating with a class of defense algorithms through sample gradient smoothing. The experimental results on four benchmarks including Split-CIFAR100 and Split-miniImageNet, demonstrate that the superiority of the proposed approach in mitigating rapidly degradation of robustness during continual learning even when facing strong adversarial attacks.
Understanding Gradient Regularization in Deep Learning: Efficient Finite-Difference Computation and Implicit Bias
Gradient regularization (GR) is a method that penalizes the gradient norm of the training loss during training. While some studies have reported that GR can improve generalization performance, little attention has been paid to it from the algorithmic perspective, that is, the algorithms of GR that efficiently improve the performance. In this study, we first reveal that a specific finite-difference computation, composed of both gradient ascent and descent steps, reduces the computational cost of GR. Next, we show that the finite-difference computation also works better in the sense of generalization performance. We theoretically analyze a solvable model, a diagonal linear network, and clarify that GR has a desirable implicit bias to so-called rich regime and finite-difference computation strengthens this bias. Furthermore, finite-difference GR is closely related to some other algorithms based on iterative ascent and descent steps for exploring flat minima. In particular, we reveal that the flooding method can perform finite-difference GR in an implicit way. Thus, this work broadens our understanding of GR for both practice and theory.
Grass: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients
Large language model (LLM) training and finetuning are often bottlenecked by limited GPU memory. While existing projection-based optimization methods address this by projecting gradients into a lower-dimensional subspace to reduce optimizer state memory, they typically rely on dense projection matrices, which can introduce computational and memory overheads. In this work, we propose Grass (GRAdient Stuctured Sparsification), a novel approach that leverages sparse projections to transform gradients into structured sparse updates. This design not only significantly reduces memory usage for optimizer states but also minimizes gradient memory footprint, computation, and communication costs, leading to substantial throughput improvements. Extensive experiments on pretraining and finetuning tasks demonstrate that Grass achieves competitive performance to full-rank training and existing projection-based methods. Notably, Grass enables half-precision pretraining of a 13B parameter LLaMA model on a single 40GB A100 GPU--a feat infeasible for previous methods--and yields up to a 2times throughput improvement on an 8-GPU system. Code can be found at https://github.com/aashiqmuhamed/GRASS .
Conditionally Strongly Log-Concave Generative Models
There is a growing gap between the impressive results of deep image generative models and classical algorithms that offer theoretical guarantees. The former suffer from mode collapse or memorization issues, limiting their application to scientific data. The latter require restrictive assumptions such as log-concavity to escape the curse of dimensionality. We partially bridge this gap by introducing conditionally strongly log-concave (CSLC) models, which factorize the data distribution into a product of conditional probability distributions that are strongly log-concave. This factorization is obtained with orthogonal projectors adapted to the data distribution. It leads to efficient parameter estimation and sampling algorithms, with theoretical guarantees, although the data distribution is not globally log-concave. We show that several challenging multiscale processes are conditionally log-concave using wavelet packet orthogonal projectors. Numerical results are shown for physical fields such as the varphi^4 model and weak lensing convergence maps with higher resolution than in previous works.
Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic Bounds and Applications
Motivated by a wide variety of applications, ranging from stochastic optimization to dimension reduction through variable selection, the problem of estimating gradients accurately is of crucial importance in statistics and learning theory. We consider here the classic regression setup, where a real valued square integrable r.v. Y is to be predicted upon observing a (possibly high dimensional) random vector X by means of a predictive function f(X) as accurately as possible in the mean-squared sense and study a nearest-neighbour-based pointwise estimate of the gradient of the optimal predictive function, the regression function m(x)=E[Ymid X=x]. Under classic smoothness conditions combined with the assumption that the tails of Y-m(X) are sub-Gaussian, we prove nonasymptotic bounds improving upon those obtained for alternative estimation methods. Beyond the novel theoretical results established, several illustrative numerical experiments have been carried out. The latter provide strong empirical evidence that the estimation method proposed works very well for various statistical problems involving gradient estimation, namely dimensionality reduction, stochastic gradient descent optimization and quantifying disentanglement.
Idempotent Generative Network
We propose a new approach for generative modeling based on training a neural network to be idempotent. An idempotent operator is one that can be applied sequentially without changing the result beyond the initial application, namely f(f(z))=f(z). The proposed model f is trained to map a source distribution (e.g, Gaussian noise) to a target distribution (e.g. realistic images) using the following objectives: (1) Instances from the target distribution should map to themselves, namely f(x)=x. We define the target manifold as the set of all instances that f maps to themselves. (2) Instances that form the source distribution should map onto the defined target manifold. This is achieved by optimizing the idempotence term, f(f(z))=f(z) which encourages the range of f(z) to be on the target manifold. Under ideal assumptions such a process provably converges to the target distribution. This strategy results in a model capable of generating an output in one step, maintaining a consistent latent space, while also allowing sequential applications for refinement. Additionally, we find that by processing inputs from both target and source distributions, the model adeptly projects corrupted or modified data back to the target manifold. This work is a first step towards a ``global projector'' that enables projecting any input into a target data distribution.
Memory-Efficient LLM Training with Online Subspace Descent
Recently, a wide range of memory-efficient LLM training algorithms have gained substantial popularity. These methods leverage the low-rank structure of gradients to project optimizer states into a subspace using projection matrix found by singular value decomposition (SVD). However, convergence of these algorithms is highly dependent on the update rules of their projection matrix. In this work, we provide the first convergence guarantee for arbitrary update rules of projection matrix. This guarantee is generally applicable to optimizers that can be analyzed with Hamiltonian Descent, including most common ones, such as LION, Adam. Inspired by our theoretical understanding, we propose Online Subspace Descent, a new family of subspace descent optimizer without SVD. Instead of updating the projection matrix with eigenvectors, Online Subspace Descent updates the projection matrix with online PCA. Online Subspace Descent is flexible and introduces only minimum overhead to training. We show that for the task of pretraining LLaMA models ranging from 60M to 7B parameters on the C4 dataset, Online Subspace Descent achieves lower perplexity and better downstream tasks performance than state-of-the-art low-rank training methods across different settings and narrows the gap with full-rank baselines.
SVD-Free Low-Rank Adaptive Gradient Optimization for Large Language Models
Low-rank optimization has emerged as a promising direction in training large language models (LLMs) to reduce the memory usage of adaptive optimizers by constraining learning to a lower-dimensional space. Prior work typically projects gradients of linear layers using approaches based on Singular Value Decomposition (SVD). However, applying SVD-based procedures individually to each layer in large models is computationally expensive and incurs additional memory costs due to storing the projection matrices. In this work, we propose a computationally efficient and conceptually simple two-step procedure to approximate SVD-based gradient projections into lower-dimensional spaces. First, we construct a complete orthogonal basis using predefined orthogonal matrices of the Discrete Cosine Transform (DCT). Second, we adaptively select basis columns based on their alignment with the gradient of each layer. Each projection matrix in our method is obtained via a single matrix multiplication followed by a lightweight sorting step to identify the most relevant basis vectors. Due to the predefined nature of the orthogonal bases, they are computed once at the start of training. During training, we store only the indices of the selected columns, avoiding the need to store full projection matrices for each layer. Our numerical experiments on both pre-training and fine-tuning tasks demonstrate the effectiveness of our dual strategy in approximating optimal low-rank projections, matching the performance of costly SVD-based methods while achieving faster runtime and reduced memory usage.
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
Diverse Projection Ensembles for Distributional Reinforcement Learning
In contrast to classical reinforcement learning, distributional reinforcement learning algorithms aim to learn the distribution of returns rather than their expected value. Since the nature of the return distribution is generally unknown a priori or arbitrarily complex, a common approach finds approximations within a set of representable, parametric distributions. Typically, this involves a projection of the unconstrained distribution onto the set of simplified distributions. We argue that this projection step entails a strong inductive bias when coupled with neural networks and gradient descent, thereby profoundly impacting the generalization behavior of learned models. In order to facilitate reliable uncertainty estimation through diversity, this work studies the combination of several different projections and representations in a distributional ensemble. We establish theoretical properties of such projection ensembles and derive an algorithm that uses ensemble disagreement, measured by the average 1-Wasserstein distance, as a bonus for deep exploration. We evaluate our algorithm on the behavior suite benchmark and find that diverse projection ensembles lead to significant performance improvements over existing methods on a wide variety of tasks with the most pronounced gains in directed exploration problems.
Transforming a Non-Differentiable Rasterizer into a Differentiable One with Stochastic Gradient Estimation
We show how to transform a non-differentiable rasterizer into a differentiable one with minimal engineering efforts and no external dependencies (no Pytorch/Tensorflow). We rely on Stochastic Gradient Estimation, a technique that consists of rasterizing after randomly perturbing the scene's parameters such that their gradient can be stochastically estimated and descended. This method is simple and robust but does not scale in dimensionality (number of scene parameters). Our insight is that the number of parameters contributing to a given rasterized pixel is bounded. Estimating and averaging gradients on a per-pixel basis hence bounds the dimensionality of the underlying optimization problem and makes the method scalable. Furthermore, it is simple to track per-pixel contributing parameters by rasterizing ID- and UV-buffers, which are trivial additions to a rasterization engine if not already available. With these minor modifications, we obtain an in-engine optimizer for 3D assets with millions of geometry and texture parameters.
What Really Matters in Matrix-Whitening Optimizers?
A range of recent optimizers have emerged that approximate the same "matrix-whitening" transformation in various ways. In this work, we systematically deconstruct such optimizers, aiming to disentangle the key components that explain performance. Across tuned hyperparameters across the board, all flavors of matrix-whitening methods reliably outperform elementwise counterparts, such as Adam. Matrix-whitening is often related to spectral descent -- however, experiments reveal that performance gains are *not explained solely by accurate spectral normalization* -- particularly, SOAP displays the largest per-step gain, even though Muon more accurately descends along the steepest spectral descent direction. Instead, we argue that matrix-whitening serves two purposes, and the variance adaptation component of matrix-whitening is the overlooked ingredient explaining this performance gap. Experiments show that variance-adapted versions of optimizers consistently outperform their sign-descent counterparts, including an adaptive version of Muon. We further ablate variance adaptation strategies, finding that while lookahead style approximations are not as effective, low-rank variance estimators can effectively reduce memory costs without a performance loss.
Householder Projector for Unsupervised Latent Semantics Discovery
Generative Adversarial Networks (GANs), especially the recent style-based generators (StyleGANs), have versatile semantics in the structured latent space. Latent semantics discovery methods emerge to move around the latent code such that only one factor varies during the traversal. Recently, an unsupervised method proposed a promising direction to directly use the eigenvectors of the projection matrix that maps latent codes to features as the interpretable directions. However, one overlooked fact is that the projection matrix is non-orthogonal and the number of eigenvectors is too large. The non-orthogonality would entangle semantic attributes in the top few eigenvectors, and the large dimensionality might result in meaningless variations among the directions even if the matrix is orthogonal. To avoid these issues, we propose Householder Projector, a flexible and general low-rank orthogonal matrix representation based on Householder transformations, to parameterize the projection matrix. The orthogonality guarantees that the eigenvectors correspond to disentangled interpretable semantics, while the low-rank property encourages that each identified direction has meaningful variations. We integrate our projector into pre-trained StyleGAN2/StyleGAN3 and evaluate the models on several benchmarks. Within only 1% of the original training steps for fine-tuning, our projector helps StyleGANs to discover more disentangled and precise semantic attributes without sacrificing image fidelity.
Flexible Isosurface Extraction for Gradient-Based Mesh Optimization
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field, an increasingly common paradigm in applications including photogrammetry, generative modeling, and inverse physics. Existing implementations adapt classic isosurface extraction algorithms like Marching Cubes or Dual Contouring; these techniques were designed to extract meshes from fixed, known fields, and in the optimization setting they lack the degrees of freedom to represent high-quality feature-preserving meshes, or suffer from numerical instabilities. We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives. Our main insight is to introduce additional carefully-chosen parameters into the representation, which allow local flexible adjustments to the extracted mesh geometry and connectivity. These parameters are updated along with the underlying scalar field via automatic differentiation when optimizing for a downstream task. We base our extraction scheme on Dual Marching Cubes for improved topological properties, and present extensions to optionally generate tetrahedral and hierarchically-adaptive meshes. Extensive experiments validate FlexiCubes on both synthetic benchmarks and real-world applications, showing that it offers significant improvements in mesh quality and geometric fidelity.
Implicit Regularization Effects of the Sobolev Norms in Image Processing
In this paper, we propose to use the general L^2-based Sobolev norms, i.e., H^s norms where sin R, to measure the data discrepancy due to noise in image processing tasks that are formulated as optimization problems. As opposed to a popular trend of developing regularization methods, we emphasize that an implicit regularization effect can be achieved through the class of Sobolev norms as the data-fitting term. Specifically, we analyze that the implicit regularization comes from the weights that the H^s norm imposes on different frequency contents of an underlying image. We further analyze the underlying noise assumption of using the Sobolev norm as the data-fitting term from a Bayesian perspective, build the connections with the Sobolev gradient-based methods and discuss the preconditioning effects on the convergence rate of the gradient descent algorithm, leading to a better understanding of functional spaces/metrics and the optimization process involved in image processing. Numerical results in full waveform inversion, image denoising and deblurring demonstrate the implicit regularization effects.
A Stronger Mixture of Low-Rank Experts for Fine-Tuning Foundation Models
In order to streamline the fine-tuning of foundation models, Low-Rank Adapters (LoRAs) have been substantially adopted across various fields, including instruction tuning and domain adaptation. The underlying concept of LoRA involves decomposing a full-rank matrix into the product of two lower-rank matrices, which reduces storage consumption and accelerates the training process. Furthermore, to address the limited expressive capacity of LoRA, the Mixture-of-Expert (MoE) has been introduced for incorporating multiple LoRA adapters. The integration of LoRA experts leads to a visible improvement across several downstream scenes. However, the mixture of LoRAs (MoE-LoRA) still exhibits its low robustness during tuning and inferring. Inspired by the Riemannian Preconditioners which train LoRA as a sub-space projector, we propose a new training strategy for MoE-LoRA, to stabilize and boost its feature learning procedure by multi-space projections. Examinations on SGD and AdamW optimizers demonstrate the effectiveness of our methodology. Source code is available at https://github.com/THUDM/MoELoRA_Riemannian.
Adaptive Estimation of Graphical Models under Total Positivity
We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices lauritzen2019maximum,slawski2015estimation and even one observation for diagonally dominant M-matrices truell2021maximum. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted ell_1-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.
Through the Haze: a Non-Convex Approach to Blind Gain Calibration for Linear Random Sensing Models
Computational sensing strategies often suffer from calibration errors in the physical implementation of their ideal sensing models. Such uncertainties are typically addressed by using multiple, accurately chosen training signals to recover the missing information on the sensing model, an approach that can be resource-consuming and cumbersome. Conversely, blind calibration does not employ any training signal, but corresponds to a bilinear inverse problem whose algorithmic solution is an open issue. We here address blind calibration as a non-convex problem for linear random sensing models, in which we aim to recover an unknown signal from its projections on sub-Gaussian random vectors, each subject to an unknown positive multiplicative factor (or gain). To solve this optimisation problem we resort to projected gradient descent starting from a suitable, carefully chosen initialisation point. An analysis of this algorithm allows us to show that it converges to the exact solution provided a sample complexity requirement is met, i.e., relating convergence to the amount of information collected during the sensing process. Interestingly, we show that this requirement grows linearly (up to log factors) in the number of unknowns of the problem. This sample complexity is found both in absence of prior information, as well as when subspace priors are available for both the signal and gains, allowing a further reduction of the number of observations required for our recovery guarantees to hold. Moreover, in the presence of noise we show how our descent algorithm yields a solution whose accuracy degrades gracefully with the amount of noise affecting the measurements. Finally, we present some numerical experiments in an imaging context, where our algorithm allows for a simple solution to blind calibration of the gains in a sensor array.
Curvature-Informed SGD via General Purpose Lie-Group Preconditioners
We present a novel approach to accelerate stochastic gradient descent (SGD) by utilizing curvature information obtained from Hessian-vector products or finite differences of parameters and gradients, similar to the BFGS algorithm. Our approach involves two preconditioners: a matrix-free preconditioner and a low-rank approximation preconditioner. We update both preconditioners online using a criterion that is robust to stochastic gradient noise and does not require line search or damping. To preserve the corresponding symmetry or invariance, our preconditioners are constrained to certain connected Lie groups. The Lie group's equivariance property simplifies the preconditioner fitting process, while its invariance property eliminates the need for damping, which is commonly required in second-order optimizers. As a result, the learning rate for parameter updating and the step size for preconditioner fitting are naturally normalized, and their default values work well in most scenarios. Our proposed approach offers a promising direction for improving the convergence of SGD with low computational overhead. We demonstrate that Preconditioned SGD (PSGD) outperforms SoTA on Vision, NLP, and RL tasks across multiple modern deep-learning architectures. We have provided code for reproducing toy and large scale experiments in this paper.
The Optimiser Hidden in Plain Sight: Training with the Loss Landscape's Induced Metric
We present a class of novel optimisers for training neural networks that makes use of the Riemannian metric naturally induced when the loss landscape is embedded in higher-dimensional space. This is the same metric that underlies common visualisations of loss landscapes. By taking this geometric perspective literally and using the induced metric, we develop a new optimiser and compare it to existing methods, namely: SGD, Adam, AdamW, and Muon, across a range of tasks and architectures. Empirically, we conclude that this new class of optimisers is highly effective in low dimensional examples, and provides slight improvement over state-of-the-art methods for training neural networks. These new optimisers have theoretically desirable properties. In particular, the effective learning rate is automatically decreased in regions of high curvature acting as a smoothed out form of gradient clipping. Similarly, one variant of these optimisers can also be viewed as inducing an effective scheduled learning rate and decoupled weight decay is the natural choice from our geometric perspective. The basic method can be used to modify any existing preconditioning method. The new optimiser has a computational complexity comparable to that of Adam.
HiFA: High-fidelity Text-to-3D with Advanced Diffusion Guidance
Automatic text-to-3D synthesis has achieved remarkable advancements through the optimization of 3D models. Existing methods commonly rely on pre-trained text-to-image generative models, such as diffusion models, providing scores for 2D renderings of Neural Radiance Fields (NeRFs) and being utilized for optimizing NeRFs. However, these methods often encounter artifacts and inconsistencies across multiple views due to their limited understanding of 3D geometry. To address these limitations, we propose a reformulation of the optimization loss using the diffusion prior. Furthermore, we introduce a novel training approach that unlocks the potential of the diffusion prior. To improve 3D geometry representation, we apply auxiliary depth supervision for NeRF-rendered images and regularize the density field of NeRFs. Extensive experiments demonstrate the superiority of our method over prior works, resulting in advanced photo-realism and improved multi-view consistency.
Text-Image Conditioned Diffusion for Consistent Text-to-3D Generation
By lifting the pre-trained 2D diffusion models into Neural Radiance Fields (NeRFs), text-to-3D generation methods have made great progress. Many state-of-the-art approaches usually apply score distillation sampling (SDS) to optimize the NeRF representations, which supervises the NeRF optimization with pre-trained text-conditioned 2D diffusion models such as Imagen. However, the supervision signal provided by such pre-trained diffusion models only depends on text prompts and does not constrain the multi-view consistency. To inject the cross-view consistency into diffusion priors, some recent works finetune the 2D diffusion model with multi-view data, but still lack fine-grained view coherence. To tackle this challenge, we incorporate multi-view image conditions into the supervision signal of NeRF optimization, which explicitly enforces fine-grained view consistency. With such stronger supervision, our proposed text-to-3D method effectively mitigates the generation of floaters (due to excessive densities) and completely empty spaces (due to insufficient densities). Our quantitative evaluations on the T^3Bench dataset demonstrate that our method achieves state-of-the-art performance over existing text-to-3D methods. We will make the code publicly available.
Sparse Representations Improve Adversarial Robustness of Neural Network Classifiers
Deep neural networks perform remarkably well on image classification tasks but remain vulnerable to carefully crafted adversarial perturbations. This work revisits linear dimensionality reduction as a simple, data-adapted defense. We empirically compare standard Principal Component Analysis (PCA) with its sparse variant (SPCA) as front-end feature extractors for downstream classifiers, and we complement these experiments with a theoretical analysis. On the theory side, we derive exact robustness certificates for linear heads applied to SPCA features: for both ell_infty and ell_2 threat models (binary and multiclass), the certified radius grows as the dual norms of W^top u shrink, where W is the projection and u the head weights. We further show that for general (non-linear) heads, sparsity reduces operator-norm bounds through a Lipschitz composition argument, predicting lower input sensitivity. Empirically, with a small non-linear network after the projection, SPCA consistently degrades more gracefully than PCA under strong white-box and black-box attacks while maintaining competitive clean accuracy. Taken together, the theory identifies the mechanism (sparser projections reduce adversarial leverage) and the experiments verify that this benefit persists beyond the linear setting. Our code is available at https://github.com/killian31/SPCARobustness.
Gradient Descent Monotonically Decreases the Sharpness of Gradient Flow Solutions in Scalar Networks and Beyond
Recent research shows that when Gradient Descent (GD) is applied to neural networks, the loss almost never decreases monotonically. Instead, the loss oscillates as gradient descent converges to its ''Edge of Stability'' (EoS). Here, we find a quantity that does decrease monotonically throughout GD training: the sharpness attained by the gradient flow solution (GFS)-the solution that would be obtained if, from now until convergence, we train with an infinitesimal step size. Theoretically, we analyze scalar neural networks with the squared loss, perhaps the simplest setting where the EoS phenomena still occur. In this model, we prove that the GFS sharpness decreases monotonically. Using this result, we characterize settings where GD provably converges to the EoS in scalar networks. Empirically, we show that GD monotonically decreases the GFS sharpness in a squared regression model as well as practical neural network architectures.
Strivec: Sparse Tri-Vector Radiance Fields
We propose Strivec, a novel neural representation that models a 3D scene as a radiance field with sparsely distributed and compactly factorized local tensor feature grids. Our approach leverages tensor decomposition, following the recent work TensoRF, to model the tensor grids. In contrast to TensoRF which uses a global tensor and focuses on their vector-matrix decomposition, we propose to utilize a cloud of local tensors and apply the classic CANDECOMP/PARAFAC (CP) decomposition to factorize each tensor into triple vectors that express local feature distributions along spatial axes and compactly encode a local neural field. We also apply multi-scale tensor grids to discover the geometry and appearance commonalities and exploit spatial coherence with the tri-vector factorization at multiple local scales. The final radiance field properties are regressed by aggregating neural features from multiple local tensors across all scales. Our tri-vector tensors are sparsely distributed around the actual scene surface, discovered by a fast coarse reconstruction, leveraging the sparsity of a 3D scene. We demonstrate that our model can achieve better rendering quality while using significantly fewer parameters than previous methods, including TensoRF and Instant-NGP.
Identifying Policy Gradient Subspaces
Policy gradient methods hold great potential for solving complex continuous control tasks. Still, their training efficiency can be improved by exploiting structure within the optimization problem. Recent work indicates that supervised learning can be accelerated by leveraging the fact that gradients lie in a low-dimensional and slowly-changing subspace. In this paper, we conduct a thorough evaluation of this phenomenon for two popular deep policy gradient methods on various simulated benchmark tasks. Our results demonstrate the existence of such gradient subspaces despite the continuously changing data distribution inherent to reinforcement learning. These findings reveal promising directions for future work on more efficient reinforcement learning, e.g., through improving parameter-space exploration or enabling second-order optimization.
Projected GANs Converge Faster
Generative Adversarial Networks (GANs) produce high-quality images but are challenging to train. They need careful regularization, vast amounts of compute, and expensive hyper-parameter sweeps. We make significant headway on these issues by projecting generated and real samples into a fixed, pretrained feature space. Motivated by the finding that the discriminator cannot fully exploit features from deeper layers of the pretrained model, we propose a more effective strategy that mixes features across channels and resolutions. Our Projected GAN improves image quality, sample efficiency, and convergence speed. It is further compatible with resolutions of up to one Megapixel and advances the state-of-the-art Fr\'echet Inception Distance (FID) on twenty-two benchmark datasets. Importantly, Projected GANs match the previously lowest FIDs up to 40 times faster, cutting the wall-clock time from 5 days to less than 3 hours given the same computational resources.
Dataset Distillation with Convexified Implicit Gradients
We propose a new dataset distillation algorithm using reparameterization and convexification of implicit gradients (RCIG), that substantially improves the state-of-the-art. To this end, we first formulate dataset distillation as a bi-level optimization problem. Then, we show how implicit gradients can be effectively used to compute meta-gradient updates. We further equip the algorithm with a convexified approximation that corresponds to learning on top of a frozen finite-width neural tangent kernel. Finally, we improve bias in implicit gradients by parameterizing the neural network to enable analytical computation of final-layer parameters given the body parameters. RCIG establishes the new state-of-the-art on a diverse series of dataset distillation tasks. Notably, with one image per class, on resized ImageNet, RCIG sees on average a 108% improvement over the previous state-of-the-art distillation algorithm. Similarly, we observed a 66% gain over SOTA on Tiny-ImageNet and 37% on CIFAR-100.
Exact Gauss-Newton Optimization for Training Deep Neural Networks
We present EGN, a stochastic second-order optimization algorithm that combines the generalized Gauss-Newton (GN) Hessian approximation with low-rank linear algebra to compute the descent direction. Leveraging the Duncan-Guttman matrix identity, the parameter update is obtained by factorizing a matrix which has the size of the mini-batch. This is particularly advantageous for large-scale machine learning problems where the dimension of the neural network parameter vector is several orders of magnitude larger than the batch size. Additionally, we show how improvements such as line search, adaptive regularization, and momentum can be seamlessly added to EGN to further accelerate the algorithm. Moreover, under mild assumptions, we prove that our algorithm converges to an epsilon-stationary point at a linear rate. Finally, our numerical experiments demonstrate that EGN consistently exceeds, or at most matches the generalization performance of well-tuned SGD, Adam, and SGN optimizers across various supervised and reinforcement learning tasks.
Improving Diffusion Models for Inverse Problems using Manifold Constraints
Recently, diffusion models have been used to solve various inverse problems in an unsupervised manner with appropriate modifications to the sampling process. However, the current solvers, which recursively apply a reverse diffusion step followed by a projection-based measurement consistency step, often produce suboptimal results. By studying the generative sampling path, here we show that current solvers throw the sample path off the data manifold, and hence the error accumulates. To address this, we propose an additional correction term inspired by the manifold constraint, which can be used synergistically with the previous solvers to make the iterations close to the manifold. The proposed manifold constraint is straightforward to implement within a few lines of code, yet boosts the performance by a surprisingly large margin. With extensive experiments, we show that our method is superior to the previous methods both theoretically and empirically, producing promising results in many applications such as image inpainting, colorization, and sparse-view computed tomography. Code available https://github.com/HJ-harry/MCG_diffusion
PFGM++: Unlocking the Potential of Physics-Inspired Generative Models
We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N{+}D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D{=}1 and to diffusion models when D{to}infty. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D{to} infty) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64{times}64 datasets, with FID scores of 1.91/2.43 when D{=}2048/128. In class-conditional setting, D{=}2048 yields current state-of-the-art FID of 1.74 on CIFAR-10. In addition, we demonstrate that models with smaller D exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp
Simple Projection Variants Improve ColBERT Performance
Multi-vector dense retrieval methods like ColBERT systematically use a single-layer linear projection to reduce the dimensionality of individual vectors. In this study, we explore the implications of the MaxSim operator on the gradient flows of the training of multi-vector models and show that such a simple linear projection has inherent, if non-critical, limitations in this setting. We then discuss the theoretical improvements that could result from replacing this single-layer projection with well-studied alternative feedforward linear networks (FFN), such as deeper, non-linear FFN blocks, GLU blocks, and skip-connections, could alleviate these limitations. Through the design and systematic evaluation of alternate projection blocks, we show that better-designed final projections positively impact the downstream performance of ColBERT models. We highlight that many projection variants outperform the original linear projections, with the best-performing variants increasing average performance on a range of retrieval benchmarks across domains by over 2 NDCG@10 points. We then conduct further exploration on the individual parameters of these projections block in order to understand what drives this empirical performance, highlighting the particular importance of upscaled intermediate projections and residual connections. As part of these ablation studies, we show that numerous suboptimal projection variants still outperform the traditional single-layer projection across multiple benchmarks, confirming our hypothesis. Finally, we observe that this effect is consistent across random seeds, further confirming that replacing the linear layer of ColBERT models is a robust, drop-in upgrade.
Weight Conditioning for Smooth Optimization of Neural Networks
In this article, we introduce a novel normalization technique for neural network weight matrices, which we term weight conditioning. This approach aims to narrow the gap between the smallest and largest singular values of the weight matrices, resulting in better-conditioned matrices. The inspiration for this technique partially derives from numerical linear algebra, where well-conditioned matrices are known to facilitate stronger convergence results for iterative solvers. We provide a theoretical foundation demonstrating that our normalization technique smoothens the loss landscape, thereby enhancing convergence of stochastic gradient descent algorithms. Empirically, we validate our normalization across various neural network architectures, including Convolutional Neural Networks (CNNs), Vision Transformers (ViT), Neural Radiance Fields (NeRF), and 3D shape modeling. Our findings indicate that our normalization method is not only competitive but also outperforms existing weight normalization techniques from the literature.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
Input Convex Gradient Networks
The gradients of convex functions are expressive models of non-trivial vector fields. For example, Brenier's theorem yields that the optimal transport map between any two measures on Euclidean space under the squared distance is realized as a convex gradient, which is a key insight used in recent generative flow models. In this paper, we study how to model convex gradients by integrating a Jacobian-vector product parameterized by a neural network, which we call the Input Convex Gradient Network (ICGN). We theoretically study ICGNs and compare them to taking the gradient of an Input-Convex Neural Network (ICNN), empirically demonstrating that a single layer ICGN can fit a toy example better than a single layer ICNN. Lastly, we explore extensions to deeper networks and connections to constructions from Riemannian geometry.
Noise-Adaptive Layerwise Learning Rates: Accelerating Geometry-Aware Optimization for Deep Neural Network Training
Geometry-aware optimization algorithms, such as Muon, have achieved remarkable success in training deep neural networks (DNNs). These methods leverage the underlying geometry of DNNs by selecting appropriate norms for different layers and updating parameters via norm-constrained linear minimization oracles (LMOs). However, even within a group of layers associated with the same norm, the local curvature can be heterogeneous across layers and vary dynamically over the course of training. For example, recent work shows that sharpness varies substantially across transformer layers and throughout training, yet standard geometry-aware optimizers impose fixed learning rates to layers within the same group, which may be inefficient for DNN training. In this paper, we introduce a noise-adaptive layerwise learning rate scheme on top of geometry-aware optimization algorithms and substantially accelerate DNN training compared to methods that use fixed learning rates within each group. Our method estimates gradient variance in the dual norm induced by the chosen LMO on the fly, and uses it to assign time-varying noise-adaptive layerwise learning rates within each group. We provide a theoretical analysis showing that our algorithm achieves a sharp convergence rate. Empirical results on transformer architectures such as LLaMA and GPT demonstrate that our approach achieves faster convergence than state-of-the-art optimizers.
Practical Convex Formulation of Robust One-hidden-layer Neural Network Training
Recent work has shown that the training of a one-hidden-layer, scalar-output fully-connected ReLU neural network can be reformulated as a finite-dimensional convex program. Unfortunately, the scale of such a convex program grows exponentially in data size. In this work, we prove that a stochastic procedure with a linear complexity well approximates the exact formulation. Moreover, we derive a convex optimization approach to efficiently solve the "adversarial training" problem, which trains neural networks that are robust to adversarial input perturbations. Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods, such as Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). We demonstrate in experiments that the proposed method achieves a noticeably better adversarial robustness and performance than the existing methods.
On the difficulty of training Recurrent Neural Networks
There are two widely known issues with properly training Recurrent Neural Networks, the vanishing and the exploding gradient problems detailed in Bengio et al. (1994). In this paper we attempt to improve the understanding of the underlying issues by exploring these problems from an analytical, a geometric and a dynamical systems perspective. Our analysis is used to justify a simple yet effective solution. We propose a gradient norm clipping strategy to deal with exploding gradients and a soft constraint for the vanishing gradients problem. We validate empirically our hypothesis and proposed solutions in the experimental section.
Tensor Gaussian Process with Contraction for Multi-Channel Imaging Analysis
Multi-channel imaging data is a prevalent data format in scientific fields such as astronomy and biology. The structured information and the high dimensionality of these 3-D tensor data makes the analysis an intriguing but challenging topic for statisticians and practitioners. The low-rank scalar-on-tensor regression model, in particular, has received widespread attention and has been re-formulated as a tensor Gaussian Process (Tensor-GP) model with multi-linear kernel in Yu et al. (2018). In this paper, we extend the Tensor-GP model by integrating a dimensionality reduction technique, called tensor contraction, with a Tensor-GP for a scalar-on-tensor regression task with multi-channel imaging data. This is motivated by the solar flare forecasting problem with high dimensional multi-channel imaging data. We first estimate a latent, reduced-size tensor for each data tensor and then apply a multi-linear Tensor-GP on the latent tensor data for prediction. We introduce an anisotropic total-variation regularization when conducting the tensor contraction to obtain a sparse and smooth latent tensor. We then propose an alternating proximal gradient descent algorithm for estimation. We validate our approach via extensive simulation studies and applying it to the solar flare forecasting problem.
Distributionally Robust Optimization with Bias and Variance Reduction
We consider the distributionally robust optimization (DRO) problem with spectral risk-based uncertainty set and f-divergence penalty. This formulation includes common risk-sensitive learning objectives such as regularized condition value-at-risk (CVaR) and average top-k loss. We present Prospect, a stochastic gradient-based algorithm that only requires tuning a single learning rate hyperparameter, and prove that it enjoys linear convergence for smooth regularized losses. This contrasts with previous algorithms that either require tuning multiple hyperparameters or potentially fail to converge due to biased gradient estimates or inadequate regularization. Empirically, we show that Prospect can converge 2-3times faster than baselines such as stochastic gradient and stochastic saddle-point methods on distribution shift and fairness benchmarks spanning tabular, vision, and language domains.
Guided Diffusion Sampling on Function Spaces with Applications to PDEs
We propose a general framework for conditional sampling in PDE-based inverse problems, targeting the recovery of whole solutions from extremely sparse or noisy measurements. This is accomplished by a function-space diffusion model and plug-and-play guidance for conditioning. Our method first trains an unconditional discretization-agnostic denoising model using neural operator architectures. At inference, we refine the samples to satisfy sparse observation data via a gradient-based guidance mechanism. Through rigorous mathematical analysis, we extend Tweedie's formula to infinite-dimensional Hilbert spaces, providing the theoretical foundation for our posterior sampling approach. Our method (FunDPS) accurately captures posterior distributions in function spaces under minimal supervision and severe data scarcity. Across five PDE tasks with only 3% observation, our method achieves an average 32% accuracy improvement over state-of-the-art fixed-resolution diffusion baselines while reducing sampling steps by 4x. Furthermore, multi-resolution fine-tuning ensures strong cross-resolution generalizability. To the best of our knowledge, this is the first diffusion-based framework to operate independently of discretization, offering a practical and flexible solution for forward and inverse problems in the context of PDEs. Code is available at https://github.com/neuraloperator/FunDPS
COAP: Memory-Efficient Training with Correlation-Aware Gradient Projection
Training large-scale neural networks in vision, and multimodal domains demands substantial memory resources, primarily due to the storage of optimizer states. While LoRA, a popular parameter-efficient method, reduces memory usage, it often suffers from suboptimal performance due to the constraints of low-rank updates. Low-rank gradient projection methods (e.g., GaLore, Flora) reduce optimizer memory by projecting gradients and moment estimates into low-rank spaces via singular value decomposition or random projection. However, they fail to account for inter-projection correlation, causing performance degradation, and their projection strategies often incur high computational costs. In this paper, we present COAP (Correlation-Aware Gradient Projection), a memory-efficient method that minimizes computational overhead while maintaining training performance. Evaluated across various vision, language, and multimodal tasks, COAP outperforms existing methods in both training speed and model performance. For LLaMA-1B, it reduces optimizer memory by 61% with only 2% additional time cost, achieving the same PPL as AdamW. With 8-bit quantization, COAP cuts optimizer memory by 81% and achieves 4x speedup over GaLore for LLaVA-v1.5-7B fine-tuning, while delivering higher accuracy.
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Optimization with matrix gradient orthogonalization has recently demonstrated impressive results in the training of deep neural networks (Jordan et al., 2024; Liu et al., 2025). In this paper, we provide a theoretical analysis of this approach. In particular, we show that the orthogonalized gradient method can be seen as a first-order trust-region optimization method, where the trust-region is defined in terms of the matrix spectral norm. Motivated by this observation, we develop the stochastic non-Euclidean trust-region gradient method with momentum, which recovers the Muon optimizer (Jordan et al., 2024) as a special case, along with normalized SGD and signSGD with momentum (Cutkosky and Mehta, 2020; Sun et al., 2023). In addition, we prove state-of-the-art convergence results for the proposed algorithm in a range of scenarios, which involve arbitrary non-Euclidean norms, constrained and composite problems, and non-convex, star-convex, first- and second-order smooth functions. Finally, our theoretical findings provide an explanation for several practical observations, including the practical superiority of Muon compared to the Orthogonal-SGDM algorithm of Tuddenham et al. (2022) and the importance of weight decay in the training of large-scale language models.
Regularized Newton Raphson Inversion for Text-to-Image Diffusion Models
Diffusion inversion is the problem of taking an image and a text prompt that describes it and finding a noise latent that would generate the image. Most current inversion techniques operate by approximately solving an implicit equation and may converge slowly or yield poor reconstructed images. Here, we formulate the problem as finding the roots of an implicit equation and design a method to solve it efficiently. Our solution is based on Newton-Raphson (NR), a well-known technique in numerical analysis. A naive application of NR may be computationally infeasible and tends to converge to incorrect solutions. We describe an efficient regularized formulation that converges quickly to a solution that provides high-quality reconstructions. We also identify a source of inconsistency stemming from prompt conditioning during the inversion process, which significantly degrades the inversion quality. To address this, we introduce a prompt-aware adjustment of the encoding, effectively correcting this issue. Our solution, Regularized Newton-Raphson Inversion, inverts an image within 0.5 sec for latent consistency models, opening the door for interactive image editing. We further demonstrate improved results in image interpolation and generation of rare objects.
Who Said Neural Networks Aren't Linear?
Neural networks are famously nonlinear. However, linearity is defined relative to a pair of vector spaces, f:XtoY. Is it possible to identify a pair of non-standard vector spaces for which a conventionally nonlinear function is, in fact, linear? This paper introduces a method that makes such vector spaces explicit by construction. We find that if we sandwich a linear operator A between two invertible neural networks, f(x)=g_y^{-1}(A g_x(x)), then the corresponding vector spaces X and Y are induced by newly defined addition and scaling actions derived from g_x and g_y. We term this kind of architecture a Linearizer. This framework makes the entire arsenal of linear algebra, including SVD, pseudo-inverse, orthogonal projection and more, applicable to nonlinear mappings. Furthermore, we show that the composition of two Linearizers that share a neural network is also a Linearizer. We leverage this property and demonstrate that training diffusion models using our architecture makes the hundreds of sampling steps collapse into a single step. We further utilize our framework to enforce idempotency (i.e. f(f(x))=f(x)) on networks leading to a globally projective generative model and to demonstrate modular style transfer.
Self-Attention Amortized Distributional Projection Optimization for Sliced Wasserstein Point-Cloud Reconstruction
Max sliced Wasserstein (Max-SW) distance has been widely known as a solution for less discriminative projections of sliced Wasserstein (SW) distance. In applications that have various independent pairs of probability measures, amortized projection optimization is utilized to predict the ``max" projecting directions given two input measures instead of using projected gradient ascent multiple times. Despite being efficient, Max-SW and its amortized version cannot guarantee metricity property due to the sub-optimality of the projected gradient ascent and the amortization gap. Therefore, we propose to replace Max-SW with distributional sliced Wasserstein distance with von Mises-Fisher (vMF) projecting distribution (v-DSW). Since v-DSW is a metric with any non-degenerate vMF distribution, its amortized version can guarantee the metricity when performing amortization. Furthermore, current amortized models are not permutation invariant and symmetric. To address the issue, we design amortized models based on self-attention architecture. In particular, we adopt efficient self-attention architectures to make the computation linear in the number of supports. With the two improvements, we derive self-attention amortized distributional projection optimization and show its appealing performance in point-cloud reconstruction and its downstream applications.
Near-Optimal Solutions of Constrained Learning Problems
With the widespread adoption of machine learning systems, the need to curtail their behavior has become increasingly apparent. This is evidenced by recent advancements towards developing models that satisfy robustness, safety, and fairness requirements. These requirements can be imposed (with generalization guarantees) by formulating constrained learning problems that can then be tackled by dual ascent algorithms. Yet, though these algorithms converge in objective value, even in non-convex settings, they cannot guarantee that their outcome is feasible. Doing so requires randomizing over all iterates, which is impractical in virtually any modern applications. Still, final iterates have been observed to perform well in practice. In this work, we address this gap between theory and practice by characterizing the constraint violation of Lagrangian minimizers associated with optimal dual variables, despite lack of convexity. To do this, we leverage the fact that non-convex, finite-dimensional constrained learning problems can be seen as parametrizations of convex, functional problems. Our results show that rich parametrizations effectively mitigate the issue of feasibility in dual methods, shedding light on prior empirical successes of dual learning. We illustrate our findings in fair learning tasks.
Empirical Analysis of the Hessian of Over-Parametrized Neural Networks
We study the properties of common loss surfaces through their Hessian matrix. In particular, in the context of deep learning, we empirically show that the spectrum of the Hessian is composed of two parts: (1) the bulk centered near zero, (2) and outliers away from the bulk. We present numerical evidence and mathematical justifications to the following conjectures laid out by Sagun et al. (2016): Fixing data, increasing the number of parameters merely scales the bulk of the spectrum; fixing the dimension and changing the data (for instance adding more clusters or making the data less separable) only affects the outliers. We believe that our observations have striking implications for non-convex optimization in high dimensions. First, the flatness of such landscapes (which can be measured by the singularity of the Hessian) implies that classical notions of basins of attraction may be quite misleading. And that the discussion of wide/narrow basins may be in need of a new perspective around over-parametrization and redundancy that are able to create large connected components at the bottom of the landscape. Second, the dependence of small number of large eigenvalues to the data distribution can be linked to the spectrum of the covariance matrix of gradients of model outputs. With this in mind, we may reevaluate the connections within the data-architecture-algorithm framework of a model, hoping that it would shed light into the geometry of high-dimensional and non-convex spaces in modern applications. In particular, we present a case that links the two observations: small and large batch gradient descent appear to converge to different basins of attraction but we show that they are in fact connected through their flat region and so belong to the same basin.
Gradient Norm Aware Minimization Seeks First-Order Flatness and Improves Generalization
Recently, flat minima are proven to be effective for improving generalization and sharpness-aware minimization (SAM) achieves state-of-the-art performance. Yet the current definition of flatness discussed in SAM and its follow-ups are limited to the zeroth-order flatness (i.e., the worst-case loss within a perturbation radius). We show that the zeroth-order flatness can be insufficient to discriminate minima with low generalization error from those with high generalization error both when there is a single minimum or multiple minima within the given perturbation radius. Thus we present first-order flatness, a stronger measure of flatness focusing on the maximal gradient norm within a perturbation radius which bounds both the maximal eigenvalue of Hessian at local minima and the regularization function of SAM. We also present a novel training procedure named Gradient norm Aware Minimization (GAM) to seek minima with uniformly small curvature across all directions. Experimental results show that GAM improves the generalization of models trained with current optimizers such as SGD and AdamW on various datasets and networks. Furthermore, we show that GAM can help SAM find flatter minima and achieve better generalization.
Recurrence of Optimum for Training Weight and Activation Quantized Networks
Deep neural networks (DNNs) are quantized for efficient inference on resource-constrained platforms. However, training deep learning models with low-precision weights and activations involves a demanding optimization task, which calls for minimizing a stage-wise loss function subject to a discrete set-constraint. While numerous training methods have been proposed, existing studies for full quantization of DNNs are mostly empirical. From a theoretical point of view, we study practical techniques for overcoming the combinatorial nature of network quantization. Specifically, we investigate a simple yet powerful projected gradient-like algorithm for quantizing two-linear-layer networks, which proceeds by repeatedly moving one step at float weights in the negation of a heuristic fake gradient of the loss function (so-called coarse gradient) evaluated at quantized weights. For the first time, we prove that under mild conditions, the sequence of quantized weights recurrently visits the global optimum of the discrete minimization problem for training fully quantized network. We also show numerical evidence of the recurrence phenomenon of weight evolution in training quantized deep networks.
A Precise Characterization of SGD Stability Using Loss Surface Geometry
Stochastic Gradient Descent (SGD) stands as a cornerstone optimization algorithm with proven real-world empirical successes but relatively limited theoretical understanding. Recent research has illuminated a key factor contributing to its practical efficacy: the implicit regularization it instigates. Several studies have investigated the linear stability property of SGD in the vicinity of a stationary point as a predictive proxy for sharpness and generalization error in overparameterized neural networks (Wu et al., 2022; Jastrzebski et al., 2019; Cohen et al., 2021). In this paper, we delve deeper into the relationship between linear stability and sharpness. More specifically, we meticulously delineate the necessary and sufficient conditions for linear stability, contingent on hyperparameters of SGD and the sharpness at the optimum. Towards this end, we introduce a novel coherence measure of the loss Hessian that encapsulates pertinent geometric properties of the loss function that are relevant to the linear stability of SGD. It enables us to provide a simplified sufficient condition for identifying linear instability at an optimum. Notably, compared to previous works, our analysis relies on significantly milder assumptions and is applicable for a broader class of loss functions than known before, encompassing not only mean-squared error but also cross-entropy loss.
The Implicit Regularization of Dynamical Stability in Stochastic Gradient Descent
In this paper, we study the implicit regularization of stochastic gradient descent (SGD) through the lens of {\em dynamical stability} (Wu et al., 2018). We start by revising existing stability analyses of SGD, showing how the Frobenius norm and trace of Hessian relate to different notions of stability. Notably, if a global minimum is linearly stable for SGD, then the trace of Hessian must be less than or equal to 2/eta, where eta denotes the learning rate. By contrast, for gradient descent (GD), the stability imposes a similar constraint but only on the largest eigenvalue of Hessian. We then turn to analyze the generalization properties of these stable minima, focusing specifically on two-layer ReLU networks and diagonal linear networks. Notably, we establish the {\em equivalence} between these metrics of sharpness and certain parameter norms for the two models, which allows us to show that the stable minima of SGD provably generalize well. By contrast, the stability-induced regularization of GD is provably too weak to ensure satisfactory generalization. This discrepancy provides an explanation of why SGD often generalizes better than GD. Note that the learning rate (LR) plays a pivotal role in the strength of stability-induced regularization. As the LR increases, the regularization effect becomes more pronounced, elucidating why SGD with a larger LR consistently demonstrates superior generalization capabilities. Additionally, numerical experiments are provided to support our theoretical findings.
Randomized Gradient Subspaces for Efficient Large Language Model Training
Training large language models (LLMs) is often bottlenecked by extreme memory demands, with optimizer states dominating the footprint. Recent works mitigates this cost by projecting gradients into low-dimensional subspaces using sophisticated update strategies. In this paper, we analyze the dynamics of gradient space and its underlying subspaces. We find that while a small subspace captures most gradient energy, a significant portion still resides in the residual bulk; moreover, the influence of the core subspace diminishes over time and in deeper layers. We also observe that the gradient space exhibits near-flat curvature, calling for algorithms that explicitly account for this geometry. Motivated by these insights, we introduce a suite of randomized algorithms, GrassWalk and GrassJump, which exploit subspace and achieve state-of-the-art memory savings while improving performance on LLaMA-1B and LLaMA-7B pretraining.
Implicit Regularization for Tubal Tensor Factorizations via Gradient Descent
We provide a rigorous analysis of implicit regularization in an overparametrized tensor factorization problem beyond the lazy training regime. For matrix factorization problems, this phenomenon has been studied in a number of works. A particular challenge has been to design universal initialization strategies which provably lead to implicit regularization in gradient-descent methods. At the same time, it has been argued by Cohen et. al. 2016 that more general classes of neural networks can be captured by considering tensor factorizations. However, in the tensor case, implicit regularization has only been rigorously established for gradient flow or in the lazy training regime. In this paper, we prove the first tensor result of its kind for gradient descent rather than gradient flow. We focus on the tubal tensor product and the associated notion of low tubal rank, encouraged by the relevance of this model for image data. We establish that gradient descent in an overparametrized tensor factorization model with a small random initialization exhibits an implicit bias towards solutions of low tubal rank. Our theoretical findings are illustrated in an extensive set of numerical simulations show-casing the dynamics predicted by our theory as well as the crucial role of using a small random initialization.
Latent Space Factorisation and Manipulation via Matrix Subspace Projection
We tackle the problem disentangling the latent space of an autoencoder in order to separate labelled attribute information from other characteristic information. This then allows us to change selected attributes while preserving other information. Our method, matrix subspace projection, is much simpler than previous approaches to latent space factorisation, for example not requiring multiple discriminators or a careful weighting among their loss functions. Furthermore our new model can be applied to autoencoders as a plugin, and works across diverse domains such as images or text. We demonstrate the utility of our method for attribute manipulation in autoencoders trained across varied domains, using both human evaluation and automated methods. The quality of generation of our new model (e.g. reconstruction, conditional generation) is highly competitive to a number of strong baselines.
Solving High-Dimensional PDEs with Latent Spectral Models
Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.
AdaGrad Meets Muon: Adaptive Stepsizes for Orthogonal Updates
The recently proposed Muon optimizer updates weight matrices via orthogonalized momentum and has demonstrated strong empirical success in large language model training. However, it remains unclear how to determine the learning rates for such orthogonalized updates. AdaGrad, by contrast, is a widely used adaptive method that scales stochastic gradients by accumulated past gradients. We propose a new algorithm, AdaGO, which combines a norm-based AdaGrad-type stepsize with an orthogonalized update direction, bringing together the benefits of both approaches. Unlike other adaptive variants of Muon, AdaGO preserves the orthogonality of the update direction, which can be interpreted as a spectral descent direction, while adapting the stepsizes to the optimization landscape by scaling the direction with accumulated past gradient norms. The implementation of AdaGO requires only minimal modification to Muon, with a single additional scalar variable, the accumulated squared gradient norms, to be computed, making it computationally and memory efficient. Optimal theoretical convergence rates are established for nonconvex functions in both stochastic and deterministic settings under standard smoothness and unbiased bounded-variance noise assumptions. Empirical results on CIFAR-10 classification and function regression demonstrate that AdaGO outperforms Muon and Adam.
A Fully First-Order Method for Stochastic Bilevel Optimization
We consider stochastic unconstrained bilevel optimization problems when only the first-order gradient oracles are available. While numerous optimization methods have been proposed for tackling bilevel problems, existing methods either tend to require possibly expensive calculations regarding Hessians of lower-level objectives, or lack rigorous finite-time performance guarantees. In this work, we propose a Fully First-order Stochastic Approximation (F2SA) method, and study its non-asymptotic convergence properties. Specifically, we show that F2SA converges to an epsilon-stationary solution of the bilevel problem after epsilon^{-7/2}, epsilon^{-5/2}, and epsilon^{-3/2} iterations (each iteration using O(1) samples) when stochastic noises are in both level objectives, only in the upper-level objective, and not present (deterministic settings), respectively. We further show that if we employ momentum-assisted gradient estimators, the iteration complexities can be improved to epsilon^{-5/2}, epsilon^{-4/2}, and epsilon^{-3/2}, respectively. We demonstrate even superior practical performance of the proposed method over existing second-order based approaches on MNIST data-hypercleaning experiments.
Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
When solving inverse problems, it is increasingly popular to use pre-trained diffusion models as plug-and-play priors. This framework can accommodate different forward models without re-training while preserving the generative capability of diffusion models. Despite their success in many imaging inverse problems, most existing methods rely on privileged information such as derivative, pseudo-inverse, or full knowledge about the forward model. This reliance poses a substantial limitation that restricts their use in a wide range of problems where such information is unavailable, such as in many scientific applications. To address this issue, we propose Ensemble Kalman Diffusion Guidance (EnKG) for diffusion models, a derivative-free approach that can solve inverse problems by only accessing forward model evaluations and a pre-trained diffusion model prior. We study the empirical effectiveness of our method across various inverse problems, including scientific settings such as inferring fluid flows and astronomical objects, which are highly non-linear inverse problems that often only permit black-box access to the forward model.
The AdEMAMix Optimizer: Better, Faster, Older
Momentum based optimizers are central to a wide range of machine learning applications. These typically rely on an Exponential Moving Average (EMA) of gradients, which decays exponentially the present contribution of older gradients. This accounts for gradients being local linear approximations which lose their relevance as the iterate moves along the loss landscape. This work questions the use of a single EMA to accumulate past gradients and empirically demonstrates how this choice can be sub-optimal: a single EMA cannot simultaneously give a high weight to the immediate past, and a non-negligible weight to older gradients. Building on this observation, we propose AdEMAMix, a simple modification of the Adam optimizer with a mixture of two EMAs to better take advantage of past gradients. Our experiments on language modeling and image classification show -- quite surprisingly -- that gradients can stay relevant for tens of thousands of steps. They help to converge faster, and often to lower minima: e.g., a 1.3B parameter AdEMAMix LLM trained on 101B tokens performs comparably to an AdamW model trained on 197B tokens (+95%). Moreover, our method significantly slows-down model forgetting during training. Our work motivates further exploration of different types of functions to leverage past gradients, beyond EMAs.
Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Interpreting and Improving Diffusion Models Using the Euclidean Distance Function
Denoising is intuitively related to projection. Indeed, under the manifold hypothesis, adding random noise is approximately equivalent to orthogonal perturbation. Hence, learning to denoise is approximately learning to project. In this paper, we use this observation to reinterpret denoising diffusion models as approximate gradient descent applied to the Euclidean distance function. We then provide straight-forward convergence analysis of the DDIM sampler under simple assumptions on the projection-error of the denoiser. Finally, we propose a new sampler based on two simple modifications to DDIM using insights from our theoretical results. In as few as 5-10 function evaluations, our sampler achieves state-of-the-art FID scores on pretrained CIFAR-10 and CelebA models and can generate high quality samples on latent diffusion models.
ReSWD: ReSTIR'd, not shaken. Combining Reservoir Sampling and Sliced Wasserstein Distance for Variance Reduction
Distribution matching is central to many vision and graphics tasks, where the widely used Wasserstein distance is too costly to compute for high dimensional distributions. The Sliced Wasserstein Distance (SWD) offers a scalable alternative, yet its Monte Carlo estimator suffers from high variance, resulting in noisy gradients and slow convergence. We introduce Reservoir SWD (ReSWD), which integrates Weighted Reservoir Sampling into SWD to adaptively retain informative projection directions in optimization steps, resulting in stable gradients while remaining unbiased. Experiments on synthetic benchmarks and real-world tasks such as color correction and diffusion guidance show that ReSWD consistently outperforms standard SWD and other variance reduction baselines. Project page: https://reservoirswd.github.io/
Projections onto Spectral Matrix Cones
Semidefinite programming is a fundamental problem class in convex optimization, but despite recent advances in solvers, solving large-scale semidefinite programs remains challenging. Generally the matrix functions involved are spectral or unitarily invariant, i.e., they depend only on the eigenvalues or singular values of the matrix. This paper investigates how spectral matrix cones -- cones defined from epigraphs and perspectives of spectral or unitarily invariant functions -- can be used to enhance first-order conic solvers for semidefinite programs. Our main result shows that projecting a matrix can be reduced to projecting its eigenvalues or singular values, which we demonstrate can be done at a negligible cost compared to the eigenvalue or singular value decomposition itself. We have integrated support for spectral matrix cone projections into the Splitting Conic Solver (SCS). Numerical experiments show that SCS with this enhancement can achieve speedups of up to an order of magnitude for solving semidefinite programs arising in experimental design, robust principal component analysis, and graph partitioning.
Gradient Descent Happens in a Tiny Subspace
We show that in a variety of large-scale deep learning scenarios the gradient dynamically converges to a very small subspace after a short period of training. The subspace is spanned by a few top eigenvectors of the Hessian (equal to the number of classes in the dataset), and is mostly preserved over long periods of training. A simple argument then suggests that gradient descent may happen mostly in this subspace. We give an example of this effect in a solvable model of classification, and we comment on possible implications for optimization and learning.
SGD with Large Step Sizes Learns Sparse Features
We showcase important features of the dynamics of the Stochastic Gradient Descent (SGD) in the training of neural networks. We present empirical observations that commonly used large step sizes (i) lead the iterates to jump from one side of a valley to the other causing loss stabilization, and (ii) this stabilization induces a hidden stochastic dynamics orthogonal to the bouncing directions that biases it implicitly toward sparse predictors. Furthermore, we show empirically that the longer large step sizes keep SGD high in the loss landscape valleys, the better the implicit regularization can operate and find sparse representations. Notably, no explicit regularization is used so that the regularization effect comes solely from the SGD training dynamics influenced by the step size schedule. Therefore, these observations unveil how, through the step size schedules, both gradient and noise drive together the SGD dynamics through the loss landscape of neural networks. We justify these findings theoretically through the study of simple neural network models as well as qualitative arguments inspired from stochastic processes. Finally, this analysis allows us to shed a new light on some common practice and observed phenomena when training neural networks. The code of our experiments is available at https://github.com/tml-epfl/sgd-sparse-features.
Simplifying Momentum-based Positive-definite Submanifold Optimization with Applications to Deep Learning
Riemannian submanifold optimization with momentum is computationally challenging because, to ensure that the iterates remain on the submanifold, we often need to solve difficult differential equations. Here, we simplify such difficulties for a class of structured symmetric positive-definite matrices with the affine-invariant metric. We do so by proposing a generalized version of the Riemannian normal coordinates that dynamically orthonormalizes the metric and locally converts the problem into an unconstrained problem in the Euclidean space. We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free 2^nd-order optimizers for deep learning in low precision settings. Code: https://github.com/yorkerlin/StructuredNGD-DL
Learning invariant representations of time-homogeneous stochastic dynamical systems
We consider the general class of time-homogeneous stochastic dynamical systems, both discrete and continuous, and study the problem of learning a representation of the state that faithfully captures its dynamics. This is instrumental to learning the transfer operator or the generator of the system, which in turn can be used for numerous tasks, such as forecasting and interpreting the system dynamics. We show that the search for a good representation can be cast as an optimization problem over neural networks. Our approach is supported by recent results in statistical learning theory, highlighting the role of approximation error and metric distortion in the learning problem. The objective function we propose is associated with projection operators from the representation space to the data space, overcomes metric distortion, and can be empirically estimated from data. In the discrete-time setting, we further derive a relaxed objective function that is differentiable and numerically well-conditioned. We compare our method against state-of-the-art approaches on different datasets, showing better performance across the board.
GradES: Significantly Faster Training in Transformers with Gradient-Based Early Stopping
Early stopping monitors global validation loss and halts all parameter updates simultaneously, which is computationally costly for large transformers due to the extended time required for validation inference. We propose GradES, a novel gradient-based early stopping approach that operates within transformer components (attention projections and Feed-Forward layer matrices). We found that different components converge at varying rates during fine-tuning. GradES tracks the magnitude of gradients in backpropagation for these matrices during training. When a projection matrix's gradients fall below a convergence threshold tau, we exclude that projection matrix from further updates individually, eliminating costly validation passes while allowing slow converging matrices to continue learning. By strategically freezing parameters when their gradients converge, GradES speeds up training time by 1.57--7.22times while simultaneously enhancing generalization through early prevention of overfitting, resulting in 1.2% higher average accuracy.
ViTO: Vision Transformer-Operator
We combine vision transformers with operator learning to solve diverse inverse problems described by partial differential equations (PDEs). Our approach, named ViTO, combines a U-Net based architecture with a vision transformer. We apply ViTO to solve inverse PDE problems of increasing complexity, namely for the wave equation, the Navier-Stokes equations and the Darcy equation. We focus on the more challenging case of super-resolution, where the input dataset for the inverse problem is at a significantly coarser resolution than the output. The results we obtain are comparable or exceed the leading operator network benchmarks in terms of accuracy. Furthermore, ViTO`s architecture has a small number of trainable parameters (less than 10% of the leading competitor), resulting in a performance speed-up of over 5x when averaged over the various test cases.
Efficient Personalization of Quantized Diffusion Model without Backpropagation
Diffusion models have shown remarkable performance in image synthesis, but they demand extensive computational and memory resources for training, fine-tuning and inference. Although advanced quantization techniques have successfully minimized memory usage for inference, training and fine-tuning these quantized models still require large memory possibly due to dequantization for accurate computation of gradients and/or backpropagation for gradient-based algorithms. However, memory-efficient fine-tuning is particularly desirable for applications such as personalization that often must be run on edge devices like mobile phones with private data. In this work, we address this challenge by quantizing a diffusion model with personalization via Textual Inversion and by leveraging a zeroth-order optimization on personalization tokens without dequantization so that it does not require gradient and activation storage for backpropagation that consumes considerable memory. Since a gradient estimation using zeroth-order optimization is quite noisy for a single or a few images in personalization, we propose to denoise the estimated gradient by projecting it onto a subspace that is constructed with the past history of the tokens, dubbed Subspace Gradient. In addition, we investigated the influence of text embedding in image generation, leading to our proposed time steps sampling, dubbed Partial Uniform Timestep Sampling for sampling with effective diffusion timesteps. Our method achieves comparable performance to prior methods in image and text alignment scores for personalizing Stable Diffusion with only forward passes while reducing training memory demand up to 8.2times.
What's in a Prior? Learned Proximal Networks for Inverse Problems
Proximal operators are ubiquitous in inverse problems, commonly appearing as part of algorithmic strategies to regularize problems that are otherwise ill-posed. Modern deep learning models have been brought to bear for these tasks too, as in the framework of plug-and-play or deep unrolling, where they loosely resemble proximal operators. Yet, something essential is lost in employing these purely data-driven approaches: there is no guarantee that a general deep network represents the proximal operator of any function, nor is there any characterization of the function for which the network might provide some approximate proximal. This not only makes guaranteeing convergence of iterative schemes challenging but, more fundamentally, complicates the analysis of what has been learned by these networks about their training data. Herein we provide a framework to develop learned proximal networks (LPN), prove that they provide exact proximal operators for a data-driven nonconvex regularizer, and show how a new training strategy, dubbed proximal matching, provably promotes the recovery of the log-prior of the true data distribution. Such LPN provide general, unsupervised, expressive proximal operators that can be used for general inverse problems with convergence guarantees. We illustrate our results in a series of cases of increasing complexity, demonstrating that these models not only result in state-of-the-art performance, but provide a window into the resulting priors learned from data.
PFGS: High Fidelity Point Cloud Rendering via Feature Splatting
Rendering high-fidelity images from sparse point clouds is still challenging. Existing learning-based approaches suffer from either hole artifacts, missing details, or expensive computations. In this paper, we propose a novel framework to render high-quality images from sparse points. This method first attempts to bridge the 3D Gaussian Splatting and point cloud rendering, which includes several cascaded modules. We first use a regressor to estimate Gaussian properties in a point-wise manner, the estimated properties are used to rasterize neural feature descriptors into 2D planes which are extracted from a multiscale extractor. The projected feature volume is gradually decoded toward the final prediction via a multiscale and progressive decoder. The whole pipeline experiences a two-stage training and is driven by our well-designed progressive and multiscale reconstruction loss. Experiments on different benchmarks show the superiority of our method in terms of rendering qualities and the necessities of our main components.
AdAdaGrad: Adaptive Batch Size Schemes for Adaptive Gradient Methods
The choice of batch sizes in stochastic gradient optimizers is critical for model training. However, the practice of varying batch sizes throughout the training process is less explored compared to other hyperparameters. We investigate adaptive batch size strategies derived from adaptive sampling methods, traditionally applied only in stochastic gradient descent. Given the significant interplay between learning rates and batch sizes, and considering the prevalence of adaptive gradient methods in deep learning, we emphasize the need for adaptive batch size strategies in these contexts. We introduce AdAdaGrad and its scalar variant AdAdaGradNorm, which incrementally increase batch sizes during training, while model updates are performed using AdaGrad and AdaGradNorm. We prove that AdaGradNorm converges with high probability at a rate of O(1/K) for finding a first-order stationary point of smooth nonconvex functions within K iterations. AdaGrad also demonstrates similar convergence properties when integrated with a novel coordinate-wise variant of our adaptive batch size strategies. Our theoretical claims are supported by numerical experiments on various image classification tasks, highlighting the enhanced adaptability of progressive batching protocols in deep learning and the potential of such adaptive batch size strategies with adaptive gradient optimizers in large-scale model training.
Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows
Recent advancements in operator-type neural networks have shown promising results in approximating the solutions of spatiotemporal Partial Differential Equations (PDEs). However, these neural networks often entail considerable training expenses, and may not always achieve the desired accuracy required in many scientific and engineering disciplines. In this paper, we propose a new Spatiotemporal Fourier Neural Operator (SFNO) that learns maps between Bochner spaces, and a new learning framework to address these issues. This new paradigm leverages wisdom from traditional numerical PDE theory and techniques to refine the pipeline of commonly adopted end-to-end neural operator training and evaluations. Specifically, in the learning problems for the turbulent flow modeling by the Navier-Stokes Equations (NSE), the proposed architecture initiates the training with a few epochs for SFNO, concluding with the freezing of most model parameters. Then, the last linear spectral convolution layer is fine-tuned without the frequency truncation. The optimization uses a negative Sobolev norm for the first time as the loss in operator learning, defined through a reliable functional-type a posteriori error estimator whose evaluation is almost exact thanks to the Parseval identity. This design allows the neural operators to effectively tackle low-frequency errors while the relief of the de-aliasing filter addresses high-frequency errors. Numerical experiments on commonly used benchmarks for the 2D NSE demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers.
Aligning Text-to-Image Diffusion Models with Reward Backpropagation
Text-to-image diffusion models have recently emerged at the forefront of image generation, powered by very large-scale unsupervised or weakly supervised text-to-image training datasets. Due to their unsupervised training, controlling their behavior in downstream tasks, such as maximizing human-perceived image quality, image-text alignment, or ethical image generation, is difficult. Recent works finetune diffusion models to downstream reward functions using vanilla reinforcement learning, notorious for the high variance of the gradient estimators. In this paper, we propose AlignProp, a method that aligns diffusion models to downstream reward functions using end-to-end backpropagation of the reward gradient through the denoising process. While naive implementation of such backpropagation would require prohibitive memory resources for storing the partial derivatives of modern text-to-image models, AlignProp finetunes low-rank adapter weight modules and uses gradient checkpointing, to render its memory usage viable. We test AlignProp in finetuning diffusion models to various objectives, such as image-text semantic alignment, aesthetics, compressibility and controllability of the number of objects present, as well as their combinations. We show AlignProp achieves higher rewards in fewer training steps than alternatives, while being conceptually simpler, making it a straightforward choice for optimizing diffusion models for differentiable reward functions of interest. Code and Visualization results are available at https://align-prop.github.io/.
Git Re-Basin: Merging Models modulo Permutation Symmetries
The success of deep learning is due in large part to our ability to solve certain massive non-convex optimization problems with relative ease. Though non-convex optimization is NP-hard, simple algorithms -- often variants of stochastic gradient descent -- exhibit surprising effectiveness in fitting large neural networks in practice. We argue that neural network loss landscapes often contain (nearly) a single basin after accounting for all possible permutation symmetries of hidden units a la Entezari et al. 2021. We introduce three algorithms to permute the units of one model to bring them into alignment with a reference model in order to merge the two models in weight space. This transformation produces a functionally equivalent set of weights that lie in an approximately convex basin near the reference model. Experimentally, we demonstrate the single basin phenomenon across a variety of model architectures and datasets, including the first (to our knowledge) demonstration of zero-barrier linear mode connectivity between independently trained ResNet models on CIFAR-10. Additionally, we identify intriguing phenomena relating model width and training time to mode connectivity. Finally, we discuss shortcomings of the linear mode connectivity hypothesis, including a counterexample to the single basin theory.
S-VolSDF: Sparse Multi-View Stereo Regularization of Neural Implicit Surfaces
Neural rendering of implicit surfaces performs well in 3D vision applications. However, it requires dense input views as supervision. When only sparse input images are available, output quality drops significantly due to the shape-radiance ambiguity problem. We note that this ambiguity can be constrained when a 3D point is visible in multiple views, as is the case in multi-view stereo (MVS). We thus propose to regularize neural rendering optimization with an MVS solution. The use of an MVS probability volume and a generalized cross entropy loss leads to a noise-tolerant optimization process. In addition, neural rendering provides global consistency constraints that guide the MVS depth hypothesis sampling and thus improves MVS performance. Given only three sparse input views, experiments show that our method not only outperforms generic neural rendering models by a large margin but also significantly increases the reconstruction quality of MVS models. Project page: https://hao-yu-wu.github.io/s-volsdf/.
Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning
Guided sampling is a vital approach for applying diffusion models in real-world tasks that embeds human-defined guidance during the sampling procedure. This paper considers a general setting where the guidance is defined by an (unnormalized) energy function. The main challenge for this setting is that the intermediate guidance during the diffusion sampling procedure, which is jointly defined by the sampling distribution and the energy function, is unknown and is hard to estimate. To address this challenge, we propose an exact formulation of the intermediate guidance as well as a novel training objective named contrastive energy prediction (CEP) to learn the exact guidance. Our method is guaranteed to converge to the exact guidance under unlimited model capacity and data samples, while previous methods can not. We demonstrate the effectiveness of our method by applying it to offline reinforcement learning (RL). Extensive experiments on D4RL benchmarks demonstrate that our method outperforms existing state-of-the-art algorithms. We also provide some examples of applying CEP for image synthesis to demonstrate the scalability of CEP on high-dimensional data.
AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights
Normalization techniques are a boon for modern deep learning. They let weights converge more quickly with often better generalization performances. It has been argued that the normalization-induced scale invariance among the weights provides an advantageous ground for gradient descent (GD) optimizers: the effective step sizes are automatically reduced over time, stabilizing the overall training procedure. It is often overlooked, however, that the additional introduction of momentum in GD optimizers results in a far more rapid reduction in effective step sizes for scale-invariant weights, a phenomenon that has not yet been studied and may have caused unwanted side effects in the current practice. This is a crucial issue because arguably the vast majority of modern deep neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and (2) scale-invariant parameters. In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances. We propose a simple and effective remedy, SGDP and AdamP: get rid of the radial component, or the norm-increasing direction, at each optimizer step. Because of the scale invariance, this modification only alters the effective step sizes without changing the effective update directions, thus enjoying the original convergence properties of GD optimizers. Given the ubiquity of momentum GD and scale invariance in machine learning, we have evaluated our methods against the baselines on 13 benchmarks. They range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and audio classification (e.g. DCASE) tasks. We verify that our solution brings about uniform gains in those benchmarks. Source code is available at https://github.com/clovaai/AdamP.
DiffuMatch: Category-Agnostic Spectral Diffusion Priors for Robust Non-rigid Shape Matching
Deep functional maps have recently emerged as a powerful tool for solving non-rigid shape correspondence tasks. Methods that use this approach combine the power and flexibility of the functional map framework, with data-driven learning for improved accuracy and generality. However, most existing methods in this area restrict the learning aspect only to the feature functions and still rely on axiomatic modeling for formulating the training loss or for functional map regularization inside the networks. This limits both the accuracy and the applicability of the resulting approaches only to scenarios where assumptions of the axiomatic models hold. In this work, we show, for the first time, that both in-network regularization and functional map training can be replaced with data-driven methods. For this, we first train a generative model of functional maps in the spectral domain using score-based generative modeling, built from a large collection of high-quality maps. We then exploit the resulting model to promote the structural properties of ground truth functional maps on new shape collections. Remarkably, we demonstrate that the learned models are category-agnostic, and can fully replace commonly used strategies such as enforcing Laplacian commutativity or orthogonality of functional maps. Our key technical contribution is a novel distillation strategy from diffusion models in the spectral domain. Experiments demonstrate that our learned regularization leads to better results than axiomatic approaches for zero-shot non-rigid shape matching. Our code is available at: https://github.com/daidedou/diffumatch/
Gradients without Backpropagation
Using backpropagation to compute gradients of objective functions for optimization has remained a mainstay of machine learning. Backpropagation, or reverse-mode differentiation, is a special case within the general family of automatic differentiation algorithms that also includes the forward mode. We present a method to compute gradients based solely on the directional derivative that one can compute exactly and efficiently via the forward mode. We call this formulation the forward gradient, an unbiased estimate of the gradient that can be evaluated in a single forward run of the function, entirely eliminating the need for backpropagation in gradient descent. We demonstrate forward gradient descent in a range of problems, showing substantial savings in computation and enabling training up to twice as fast in some cases.
ProjectedEx: Enhancing Generation in Explainable AI for Prostate Cancer
Prostate cancer, a growing global health concern, necessitates precise diagnostic tools, with Magnetic Resonance Imaging (MRI) offering high-resolution soft tissue imaging that significantly enhances diagnostic accuracy. Recent advancements in explainable AI and representation learning have significantly improved prostate cancer diagnosis by enabling automated and precise lesion classification. However, existing explainable AI methods, particularly those based on frameworks like generative adversarial networks (GANs), are predominantly developed for natural image generation, and their application to medical imaging often leads to suboptimal performance due to the unique characteristics and complexity of medical image. To address these challenges, our paper introduces three key contributions. First, we propose ProjectedEx, a generative framework that provides interpretable, multi-attribute explanations, effectively linking medical image features to classifier decisions. Second, we enhance the encoder module by incorporating feature pyramids, which enables multiscale feedback to refine the latent space and improves the quality of generated explanations. Additionally, we conduct comprehensive experiments on both the generator and classifier, demonstrating the clinical relevance and effectiveness of ProjectedEx in enhancing interpretability and supporting the adoption of AI in medical settings. Code will be released at https://github.com/Richardqiyi/ProjectedEx
ZeroRF: Fast Sparse View 360° Reconstruction with Zero Pretraining
We present ZeroRF, a novel per-scene optimization method addressing the challenge of sparse view 360{\deg} reconstruction in neural field representations. Current breakthroughs like Neural Radiance Fields (NeRF) have demonstrated high-fidelity image synthesis but struggle with sparse input views. Existing methods, such as Generalizable NeRFs and per-scene optimization approaches, face limitations in data dependency, computational cost, and generalization across diverse scenarios. To overcome these challenges, we propose ZeroRF, whose key idea is to integrate a tailored Deep Image Prior into a factorized NeRF representation. Unlike traditional methods, ZeroRF parametrizes feature grids with a neural network generator, enabling efficient sparse view 360{\deg} reconstruction without any pretraining or additional regularization. Extensive experiments showcase ZeroRF's versatility and superiority in terms of both quality and speed, achieving state-of-the-art results on benchmark datasets. ZeroRF's significance extends to applications in 3D content generation and editing. Project page: https://sarahweiii.github.io/zerorf/
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
Recent research has demonstrated that feature attribution methods for deep networks can themselves be incorporated into training; these attribution priors optimize for a model whose attributions have certain desirable properties -- most frequently, that particular features are important or unimportant. These attribution priors are often based on attribution methods that are not guaranteed to satisfy desirable interpretability axioms, such as completeness and implementation invariance. Here, we introduce attribution priors to optimize for higher-level properties of explanations, such as smoothness and sparsity, enabled by a fast new attribution method formulation called expected gradients that satisfies many important interpretability axioms. This improves model performance on many real-world tasks where previous attribution priors fail. Our experiments show that the gains from combining higher-level attribution priors with expected gradients attributions are consistent across image, gene expression, and health care data sets. We believe this work motivates and provides the necessary tools to support the widespread adoption of axiomatic attribution priors in many areas of applied machine learning. The implementations and our results have been made freely available to academic communities.
Projected Coupled Diffusion for Test-Time Constrained Joint Generation
Modifications to test-time sampling have emerged as an important extension to diffusion algorithms, with the goal of biasing the generative process to achieve a given objective without having to retrain the entire diffusion model. However, generating jointly correlated samples from multiple pre-trained diffusion models while simultaneously enforcing task-specific constraints without costly retraining has remained challenging. To this end, we propose Projected Coupled Diffusion (PCD), a novel test-time framework for constrained joint generation. PCD introduces a coupled guidance term into the generative dynamics to encourage coordination between diffusion models and incorporates a projection step at each diffusion step to enforce hard constraints. Empirically, we demonstrate the effectiveness of PCD in application scenarios of image-pair generation, object manipulation, and multi-robot motion planning. Our results show improved coupling effects and guaranteed constraint satisfaction without incurring excessive computational costs.
GECCO: Geometrically-Conditioned Point Diffusion Models
Diffusion models generating images conditionally on text, such as Dall-E 2 and Stable Diffusion, have recently made a splash far beyond the computer vision community. Here, we tackle the related problem of generating point clouds, both unconditionally, and conditionally with images. For the latter, we introduce a novel geometrically-motivated conditioning scheme based on projecting sparse image features into the point cloud and attaching them to each individual point, at every step in the denoising process. This approach improves geometric consistency and yields greater fidelity than current methods relying on unstructured, global latent codes. Additionally, we show how to apply recent continuous-time diffusion schemes. Our method performs on par or above the state of art on conditional and unconditional experiments on synthetic data, while being faster, lighter, and delivering tractable likelihoods. We show it can also scale to diverse indoors scenes.
Diffuse and Disperse: Image Generation with Representation Regularization
The development of diffusion-based generative models over the past decade has largely proceeded independently of progress in representation learning. These diffusion models typically rely on regression-based objectives and generally lack explicit regularization. In this work, we propose Dispersive Loss, a simple plug-and-play regularizer that effectively improves diffusion-based generative models. Our loss function encourages internal representations to disperse in the hidden space, analogous to contrastive self-supervised learning, with the key distinction that it requires no positive sample pairs and therefore does not interfere with the sampling process used for regression. Compared to the recent method of representation alignment (REPA), our approach is self-contained and minimalist, requiring no pre-training, no additional parameters, and no external data. We evaluate Dispersive Loss on the ImageNet dataset across a range of models and report consistent improvements over widely used and strong baselines. We hope our work will help bridge the gap between generative modeling and representation learning.
Target-based Surrogates for Stochastic Optimization
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a target space (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the SSO algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for SSO when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of SSO.
SAGA: Learning Signal-Aligned Distributions for Improved Text-to-Image Generation
State-of-the-art text-to-image models produce visually impressive results but often struggle with precise alignment to text prompts, leading to missing critical elements or unintended blending of distinct concepts. We propose a novel approach that learns a high-success-rate distribution conditioned on a target prompt, ensuring that generated images faithfully reflect the corresponding prompts. Our method explicitly models the signal component during the denoising process, offering fine-grained control that mitigates over-optimization and out-of-distribution artifacts. Moreover, our framework is training-free and seamlessly integrates with both existing diffusion and flow matching architectures. It also supports additional conditioning modalities -- such as bounding boxes -- for enhanced spatial alignment. Extensive experiments demonstrate that our approach outperforms current state-of-the-art methods. The code is available at https://github.com/grimalPaul/gsn-factory.
SmoothGrad: removing noise by adding noise
Explaining the output of a deep network remains a challenge. In the case of an image classifier, one type of explanation is to identify pixels that strongly influence the final decision. A starting point for this strategy is the gradient of the class score function with respect to the input image. This gradient can be interpreted as a sensitivity map, and there are several techniques that elaborate on this basic idea. This paper makes two contributions: it introduces SmoothGrad, a simple method that can help visually sharpen gradient-based sensitivity maps, and it discusses lessons in the visualization of these maps. We publish the code for our experiments and a website with our results.
Dynamic Classifier-Free Diffusion Guidance via Online Feedback
Classifier-free guidance (CFG) is a cornerstone of text-to-image diffusion models, yet its effectiveness is limited by the use of static guidance scales. This "one-size-fits-all" approach fails to adapt to the diverse requirements of different prompts; moreover, prior solutions like gradient-based correction or fixed heuristic schedules introduce additional complexities and fail to generalize. In this work, we challeng this static paradigm by introducing a framework for dynamic CFG scheduling. Our method leverages online feedback from a suite of general-purpose and specialized small-scale latent-space evaluations, such as CLIP for alignment, a discriminator for fidelity and a human preference reward model, to assess generation quality at each step of the reverse diffusion process. Based on this feedback, we perform a greedy search to select the optimal CFG scale for each timestep, creating a unique guidance schedule tailored to every prompt and sample. We demonstrate the effectiveness of our approach on both small-scale models and the state-of-the-art Imagen 3, showing significant improvements in text alignment, visual quality, text rendering and numerical reasoning. Notably, when compared against the default Imagen 3 baseline, our method achieves up to 53.8% human preference win-rate for overall preference, a figure that increases up to to 55.5% on prompts targeting specific capabilities like text rendering. Our work establishes that the optimal guidance schedule is inherently dynamic and prompt-dependent, and provides an efficient and generalizable framework to achieve it.
Choose a Transformer: Fourier or Galerkin
In this paper, we apply the self-attention from the state-of-the-art Transformer in Attention Is All You Need for the first time to a data-driven operator learning problem related to partial differential equations. An effort is put together to explain the heuristics of, and to improve the efficacy of the attention mechanism. By employing the operator approximation theory in Hilbert spaces, it is demonstrated for the first time that the softmax normalization in the scaled dot-product attention is sufficient but not necessary. Without softmax, the approximation capacity of a linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin projection layer-wise, and the estimate is independent with respect to the sequence length. A new layer normalization scheme mimicking the Petrov-Galerkin projection is proposed to allow a scaling to propagate through attention layers, which helps the model achieve remarkable accuracy in operator learning tasks with unnormalized data. Finally, we present three operator learning experiments, including the viscid Burgers' equation, an interface Darcy flow, and an inverse interface coefficient identification problem. The newly proposed simple attention-based operator learner, Galerkin Transformer, shows significant improvements in both training cost and evaluation accuracy over its softmax-normalized counterparts.
Beyond One-hot Encoding: lower dimensional target embedding
Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, One-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates.
Investigating the Benefits of Projection Head for Representation Learning
An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.
Physics-Informed Diffusion Models
Generative models such as denoising diffusion models are quickly advancing their ability to approximate highly complex data distributions. They are also increasingly leveraged in scientific machine learning, where samples from the implied data distribution are expected to adhere to specific governing equations. We present a framework that unifies generative modeling and partial differential equation fulfillment by introducing a first-principle-based loss term that enforces generated samples to fulfill the underlying physical constraints. Our approach reduces the residual error by up to two orders of magnitude compared to previous work in a fluid flow case study and outperforms task-specific frameworks in relevant metrics for structural topology optimization. We also present numerical evidence that our extended training objective acts as a natural regularization mechanism against overfitting. Our framework is simple to implement and versatile in its applicability for imposing equality and inequality constraints as well as auxiliary optimization objectives.
The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing
We propose ScaledGD(\lambda), a preconditioned gradient descent method to tackle the low-rank matrix sensing problem when the true rank is unknown, and when the matrix is possibly ill-conditioned. Using overparametrized factor representations, ScaledGD(\lambda) starts from a small random initialization, and proceeds by gradient descent with a specific form of damped preconditioning to combat bad curvatures induced by overparameterization and ill-conditioning. At the expense of light computational overhead incurred by preconditioners, ScaledGD(\lambda) is remarkably robust to ill-conditioning compared to vanilla gradient descent (GD) even with overprameterization. Specifically, we show that, under the Gaussian design, ScaledGD(\lambda) converges to the true low-rank matrix at a constant linear rate after a small number of iterations that scales only logarithmically with respect to the condition number and the problem dimension. This significantly improves over the convergence rate of vanilla GD which suffers from a polynomial dependency on the condition number. Our work provides evidence on the power of preconditioning in accelerating the convergence without hurting generalization in overparameterized learning.
Fast Differentiable Matrix Square Root
Computing the matrix square root or its inverse in a differentiable manner is important in a variety of computer vision tasks. Previous methods either adopt the Singular Value Decomposition (SVD) to explicitly factorize the matrix or use the Newton-Schulz iteration (NS iteration) to derive the approximate solution. However, both methods are not computationally efficient enough in either the forward pass or in the backward pass. In this paper, we propose two more efficient variants to compute the differentiable matrix square root. For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is to use Matrix Pad\'e Approximants (MPA). The backward gradient is computed by iteratively solving the continuous-time Lyapunov equation using the matrix sign function. Both methods yield considerable speed-up compared with the SVD or the Newton-Schulz iteration. Experimental results on the de-correlated batch normalization and second-order vision transformer demonstrate that our methods can also achieve competitive and even slightly better performances. The code is available at https://github.com/KingJamesSong/FastDifferentiableMatSqrt{https://github.com/KingJamesSong/FastDifferentiableMatSqrt}.
Truncated Back-propagation for Bilevel Optimization
Bilevel optimization has been recently revisited for designing and analyzing algorithms in hyperparameter tuning and meta learning tasks. However, due to its nested structure, evaluating exact gradients for high-dimensional problems is computationally challenging. One heuristic to circumvent this difficulty is to use the approximate gradient given by performing truncated back-propagation through the iterative optimization procedure that solves the lower-level problem. Although promising empirical performance has been reported, its theoretical properties are still unclear. In this paper, we analyze the properties of this family of approximate gradients and establish sufficient conditions for convergence. We validate this on several hyperparameter tuning and meta learning tasks. We find that optimization with the approximate gradient computed using few-step back-propagation often performs comparably to optimization with the exact gradient, while requiring far less memory and half the computation time.
Vox-E: Text-guided Voxel Editing of 3D Objects
Large scale text-guided diffusion models have garnered significant attention due to their ability to synthesize diverse images that convey complex visual concepts. This generative power has more recently been leveraged to perform text-to-3D synthesis. In this work, we present a technique that harnesses the power of latent diffusion models for editing existing 3D objects. Our method takes oriented 2D images of a 3D object as input and learns a grid-based volumetric representation of it. To guide the volumetric representation to conform to a target text prompt, we follow unconditional text-to-3D methods and optimize a Score Distillation Sampling (SDS) loss. However, we observe that combining this diffusion-guided loss with an image-based regularization loss that encourages the representation not to deviate too strongly from the input object is challenging, as it requires achieving two conflicting goals while viewing only structure-and-appearance coupled 2D projections. Thus, we introduce a novel volumetric regularization loss that operates directly in 3D space, utilizing the explicit nature of our 3D representation to enforce correlation between the global structure of the original and edited object. Furthermore, we present a technique that optimizes cross-attention volumetric grids to refine the spatial extent of the edits. Extensive experiments and comparisons demonstrate the effectiveness of our approach in creating a myriad of edits which cannot be achieved by prior works.
Second-order regression models exhibit progressive sharpening to the edge of stability
Recent studies of gradient descent with large step sizes have shown that there is often a regime with an initial increase in the largest eigenvalue of the loss Hessian (progressive sharpening), followed by a stabilization of the eigenvalue near the maximum value which allows convergence (edge of stability). These phenomena are intrinsically non-linear and do not happen for models in the constant Neural Tangent Kernel (NTK) regime, for which the predictive function is approximately linear in the parameters. As such, we consider the next simplest class of predictive models, namely those that are quadratic in the parameters, which we call second-order regression models. For quadratic objectives in two dimensions, we prove that this second-order regression model exhibits progressive sharpening of the NTK eigenvalue towards a value that differs slightly from the edge of stability, which we explicitly compute. In higher dimensions, the model generically shows similar behavior, even without the specific structure of a neural network, suggesting that progressive sharpening and edge-of-stability behavior aren't unique features of neural networks, and could be a more general property of discrete learning algorithms in high-dimensional non-linear models.
Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching
We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.
Scaling Riemannian Diffusion Models
Riemannian diffusion models draw inspiration from standard Euclidean space diffusion models to learn distributions on general manifolds. Unfortunately, the additional geometric complexity renders the diffusion transition term inexpressible in closed form, so prior methods resort to imprecise approximations of the score matching training objective that degrade performance and preclude applications in high dimensions. In this work, we reexamine these approximations and propose several practical improvements. Our key observation is that most relevant manifolds are symmetric spaces, which are much more amenable to computation. By leveraging and combining various ans\"{a}tze, we can quickly compute relevant quantities to high precision. On low dimensional datasets, our correction produces a noticeable improvement, allowing diffusion to compete with other methods. Additionally, we show that our method enables us to scale to high dimensional tasks on nontrivial manifolds. In particular, we model QCD densities on SU(n) lattices and contrastively learned embeddings on high dimensional hyperspheres.
AuON: A Linear-time Alternative to Semi-Orthogonal Momentum Updates
Orthogonal gradient updates have emerged as a promising direction in optimization for machine learning. However, traditional approaches such as SVD/QR decomposition incur prohibitive computational costs of O(n^3) and underperform compared to well-tuned SGD with momentum, since momentum is applied only after strict orthogonalization. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and producing semi-orthogonal matrices via Newton-Schulz iterations, reducing complexity to O(n^2). Nevertheless, quadratic costs remain a bottleneck. In this work, we study the semi-orthogonal properties of momentum-based updates and develop a method to bound momentum updates under a spectral-norm trust region, preserving directional information without requiring explicit semi-orthogonalization. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without constructing semi-orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. Our approach combines hyperbolic-cosine RMS scaling transformations with normalization, demonstrating both effectiveness and computational efficiency compared to Newton-Schulz methods. We further introduce a hybrid variant (Hybrid-AuON) that applies a single Newton-Schulz iteration. Experiments across vision and language benchmarks show that AuON and its hybrid variant achieve performance comparable to strong baselines such as AdamW and Muon. Code is available at: https://github.com/ryyzn9/AuON
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
Self-predictive unsupervised learning methods such as BYOL or SimSiam have shown impressive results, and counter-intuitively, do not collapse to trivial representations. In this work, we aim at exploring the simplest possible mathematical arguments towards explaining the underlying mechanisms behind self-predictive unsupervised learning. We start with the observation that those methods crucially rely on the presence of a predictor network (and stop-gradient). With simple linear algebra, we show that when using a linear predictor, the optimal predictor is close to an orthogonal projection, and propose a general framework based on orthonormalization that enables to interpret and give intuition on why BYOL works. In addition, this framework demonstrates the crucial role of the exponential moving average and stop-gradient operator in BYOL as an efficient orthonormalization mechanism. We use these insights to propose four new closed-form predictor variants of BYOL to support our analysis. Our closed-form predictors outperform standard linear trainable predictor BYOL at 100 and 300 epochs (top-1 linear accuracy on ImageNet).
Towards Zero-Shot Scale-Aware Monocular Depth Estimation
Monocular depth estimation is scale-ambiguous, and thus requires scale supervision to produce metric predictions. Even so, the resulting models will be geometry-specific, with learned scales that cannot be directly transferred across domains. Because of that, recent works focus instead on relative depth, eschewing scale in favor of improved up-to-scale zero-shot transfer. In this work we introduce ZeroDepth, a novel monocular depth estimation framework capable of predicting metric scale for arbitrary test images from different domains and camera parameters. This is achieved by (i) the use of input-level geometric embeddings that enable the network to learn a scale prior over objects; and (ii) decoupling the encoder and decoder stages, via a variational latent representation that is conditioned on single frame information. We evaluated ZeroDepth targeting both outdoor (KITTI, DDAD, nuScenes) and indoor (NYUv2) benchmarks, and achieved a new state-of-the-art in both settings using the same pre-trained model, outperforming methods that train on in-domain data and require test-time scaling to produce metric estimates.
Operator Learning with Neural Fields: Tackling PDEs on General Geometries
Machine learning approaches for solving partial differential equations require learning mappings between function spaces. While convolutional or graph neural networks are constrained to discretized functions, neural operators present a promising milestone toward mapping functions directly. Despite impressive results they still face challenges with respect to the domain geometry and typically rely on some form of discretization. In order to alleviate such limitations, we present CORAL, a new method that leverages coordinate-based networks for solving PDEs on general geometries. CORAL is designed to remove constraints on the input mesh, making it applicable to any spatial sampling and geometry. Its ability extends to diverse problem domains, including PDE solving, spatio-temporal forecasting, and inverse problems like geometric design. CORAL demonstrates robust performance across multiple resolutions and performs well in both convex and non-convex domains, surpassing or performing on par with state-of-the-art models.
