new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning

Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.

  • 4 authors
·
Sep 16, 2022

Before It's Too Late: A State Space Model for the Early Prediction of Misinformation and Disinformation Engagement

In today's digital age, conspiracies and information campaigns can emerge rapidly and erode social and democratic cohesion. While recent deep learning approaches have made progress in modeling engagement through language and propagation models, they struggle with irregularly sampled data and early trajectory assessment. We present IC-Mamba, a novel state space model that forecasts social media engagement by modeling interval-censored data with integrated temporal embeddings. Our model excels at predicting engagement patterns within the crucial first 15-30 minutes of posting (RMSE 0.118-0.143), enabling rapid assessment of content reach. By incorporating interval-censored modeling into the state space framework, IC-Mamba captures fine-grained temporal dynamics of engagement growth, achieving a 4.72% improvement over state-of-the-art across multiple engagement metrics (likes, shares, comments, and emojis). Our experiments demonstrate IC-Mamba's effectiveness in forecasting both post-level dynamics and broader narrative patterns (F1 0.508-0.751 for narrative-level predictions). The model maintains strong predictive performance across extended time horizons, successfully forecasting opinion-level engagement up to 28 days ahead using observation windows of 3-10 days. These capabilities enable earlier identification of potentially problematic content, providing crucial lead time for designing and implementing countermeasures. Code is available at: https://github.com/ltian678/ic-mamba. An interactive dashboard demonstrating our results is available at: https://ic-mamba.behavioral-ds.science.

  • 5 authors
·
Feb 6, 2025

NAICS-Aware Graph Neural Networks for Large-Scale POI Co-visitation Prediction: A Multi-Modal Dataset and Methodology

Understanding where people go after visiting one business is crucial for urban planning, retail analytics, and location-based services. However, predicting these co-visitation patterns across millions of venues remains challenging due to extreme data sparsity and the complex interplay between spatial proximity and business relationships. Traditional approaches using only geographic distance fail to capture why coffee shops attract different customer flows than fine dining restaurants, even when co-located. We introduce NAICS-aware GraphSAGE, a novel graph neural network that integrates business taxonomy knowledge through learnable embeddings to predict population-scale co-visitation patterns. Our key insight is that business semantics, captured through detailed industry codes, provide crucial signals that pure spatial models cannot explain. The approach scales to massive datasets (4.2 billion potential venue pairs) through efficient state-wise decomposition while combining spatial, temporal, and socioeconomic features in an end-to-end framework. Evaluated on our POI-Graph dataset comprising 94.9 million co-visitation records across 92,486 brands and 48 US states, our method achieves significant improvements over state-of-the-art baselines: the R-squared value increases from 0.243 to 0.625 (a 157 percent improvement), with strong gains in ranking quality (32 percent improvement in NDCG at 10).

  • 6 authors
·
Jul 25, 2025

STATe-of-Thoughts: Structured Action Templates for Tree-of-Thoughts

Inference-Time-Compute (ITC) methods like Best-of-N and Tree-of-Thoughts are meant to produce output candidates that are both high-quality and diverse, but their use of high-temperature sampling often fails to achieve meaningful output diversity. Moreover, existing ITC methods offer limited control over how to perform reasoning, which in turn limits their explainability. We present STATe-of-Thoughts (STATe), an interpretable ITC method that searches over high-level reasoning patterns. STATe replaces stochastic sampling with discrete and interpretable textual interventions: a controller selects actions encoding high-level reasoning choices, a generator produces reasoning steps conditioned on those choices, and an evaluator scores candidates to guide search. This structured approach yields three main advantages. First, action-guided textual interventions produce greater response diversity than temperature-based sampling. Second, in a case study on argument generation, STATe's explicit action sequences capture interpretable features that are highly predictive of output quality. Third, estimating the association between performance and action choices allows us to identify promising yet unexplored regions of the action space and steer generation directly toward them. Together, these results establish STATe as a practical framework for generating high-quality, diverse, and interpretable text. Our framework is available at https://github.com/zbambergerNLP/state-of-thoughts.

  • 6 authors
·
Feb 15 2

Jurisdiction as Structural Barrier: How Privacy Policy Organization May Reduce Visibility of Substantive Disclosures

Privacy policies are supposed to provide notice. But what if substantive information appears only where users skip it? We identify a structural pattern we call jurisdiction-siloed disclosure: information about data practices appearing in specific, actionable form only within regional compliance sections labeled "California Residents" or "EU/UK Users," while general sections use vague or qualified language for the same practices. Our audit of 123 major companies identifies 282 potential instances across 77 companies (62.6% of this purposive sample). A conservative estimate restricted to practice categories validated against OPP-115 human annotations finds 138 instances across 54 companies (44%); post-2018 categories central to our findings await independent validation. If users skip jurisdiction-labeled sections as information foraging theory predicts, users outside regulated jurisdictions would receive less specific information about practices affecting them--a transparency failure operating through document architecture rather than omission. We propose universal substantive disclosure: practices affecting all users should appear in the main policy body, with regional sections containing only procedural rights information. This standard finds support in analogous disclosure regimes (securities, truth-in-lending, nutritional labeling) where material information must reach all affected parties. Regulators could operationalize this through the FTC's "clear and conspicuous" standard and GDPR transparency principles. This work is hypothesis-generating: we establish that the structural pattern exists and ground the transparency concern in behavioral theory, but direct measurement of jurisdiction-specific section skipping remains the critical validation priority. We release our methodology and annotated dataset to enable replication.

  • 1 authors
·
Jan 28

Urban Mobility Assessment Using LLMs

Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies.

  • 3 authors
·
Aug 22, 2024