File size: 4,516 Bytes
da1f43e 0aa78de ac03719 98c8354 ac03719 98f5160 ac03719 98c8354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model:
- google/siglip2-base-patch16-224
language:
- en
pipeline_tag: image-classification
library_name: transformers
tags:
- text-generation-inference
- siglip2
- image-filter
- safe-image-moderation
- adult-content-filter
- content-safety
- anime-detection
- ai-safety
---
# **Image-Guard-ckpt-3312**
> **Image-Guard-ckpt-3312** is a **multiclass image safety classification model** fine-tuned from **google/siglip2-base-patch16-224**.
> This checkpoint is provided for **experimental purposes**. For production or actual usage, please refer to the final released models.
> It classifies images into multiple safety-related categories using the **SiglipForImageClassification** architecture.
```py
Model Evaluation:
precision recall f1-score support
Anime-SFW 0.8696 0.8718 0.8707 5600
Hentai 0.9057 0.8567 0.8805 4180
Normal-SFW 0.8865 0.8726 0.8795 5503
Pornography 0.9451 0.9230 0.9340 5600
Enticing or Sensual 0.8705 0.9371 0.9026 5600
accuracy 0.8942 26483
macro avg 0.8955 0.8923 0.8934 26483
weighted avg 0.8950 0.8942 0.8942 26483
```

## **Label Space: 5 Classes**
| Class ID | Label | Description |
| -------- | ------------------- | ------------------------------------------------------------------------- |
| **0** | Anime-SFW | Safe-for-work anime-style images. |
| **1** | Hentai | Explicit or adult anime content. |
| **2** | Normal-SFW | Realistic or photographic images that are safe for work. |
| **3** | Pornography | Explicit adult content involving nudity or sexual acts. |
| **4** | Enticing or Sensual | Suggestive imagery that is not explicit but intended to evoke sensuality. |
---
## **Install Dependencies**
```bash
pip install -q transformers torch pillow gradio
```
## **Inference Code**
```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Image-Guard-ckpt-3312"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Label mapping
id2label = {
"0": "Anime-SFW",
"1": "Hentai",
"2": "Normal-SFW",
"3": "Pornography",
"4": "Enticing or Sensual"
}
def classify_image_safety(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_image_safety,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=5, label="Image Safety Classification"),
title="Image-Guard-ckpt-3312",
description="Upload an image to classify it into one of five safety categories: Anime-SFW, Hentai, Normal-SFW, Pornography, or Enticing/Sensual."
)
if __name__ == "__main__":
iface.launch()
```
## **Intended Use**
**Image-Guard-ckpt-3312** is designed for:
* **Content Moderation** – Identify and filter sensitive or NSFW imagery.
* **Dataset Curation** – Separate clean and explicit data for research and training.
* **Platform Safety** – Support compliance for social, educational, and media-sharing platforms.
* **AI Model Input Filtering** – Prevent unsafe data from entering multimodal or generative pipelines.
> **Note:** This checkpoint is experimental. For production-grade usage, use the final verified model versions.
## **Limitations**
* The model may misclassify borderline or artistically abstract images.
* It does not perform face recognition or identify individuals.
* Performance depends on lighting, resolution, and visual context.
* Human moderation is still recommended for sensitive content. |