File size: 24,501 Bytes
18b382b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
#!/usr/bin/env python3
# Copyright (c) 2025 Delanoe Pirard / Aedelon - Apache 2.0
"""
Full Benchmark Suite for Depth Anything 3
Tests ALL optimization combinations for each device (CPU, MPS, CUDA).
Optimizations tested:
- Preprocessing: CPU (PIL) vs GPU (NVJPEG on CUDA)
- Attention: SDPA (Flash Attention) vs Manual
Usage:
python benchmarks/full_benchmark.py # Best device only
python benchmarks/full_benchmark.py -d all # All devices
python benchmarks/full_benchmark.py -d cuda # CUDA only
python benchmarks/full_benchmark.py --quick # Quick mode
"""
import argparse
import gc
import logging
import os
import shutil
import sys
import time
import warnings
from dataclasses import dataclass
from typing import Dict, List, Optional
# Suppress ALL logging before any imports
logging.disable(logging.CRITICAL)
os.environ["DA3_LOG_LEVEL"] = "ERROR"
warnings.filterwarnings("ignore")
import numpy as np
import torch
from PIL import Image
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "src"))
# Suppress depth_anything_3 logger specifically
logging.getLogger("depth_anything_3").disabled = True
logging.getLogger("dinov2").disabled = True
# ============================================================================
# STYLES
# ============================================================================
class Style:
CYAN = "\033[96m"
GREEN = "\033[92m"
YELLOW = "\033[93m"
RED = "\033[91m"
BOLD = "\033[1m"
DIM = "\033[2m"
RESET = "\033[0m"
def colored(text, color, bold=False):
prefix = Style.BOLD if bold else ""
return f"{prefix}{color}{text}{Style.RESET}"
# ============================================================================
# UTILITIES
# ============================================================================
def cleanup():
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
if torch.backends.mps.is_available():
torch.mps.empty_cache()
def sync_device(device):
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
def get_available_devices() -> List[torch.device]:
"""Get all available devices for benchmarking."""
devices = [torch.device("cpu")]
if torch.backends.mps.is_available():
devices.append(torch.device("mps"))
if torch.cuda.is_available():
devices.append(torch.device("cuda"))
return devices
def get_device_name(device: torch.device) -> str:
"""Get human-readable device name."""
if device.type == "cuda":
return torch.cuda.get_device_name(device)
elif device.type == "mps":
return "Apple Silicon (MPS)"
else:
import platform
return f"CPU ({platform.processor() or 'Unknown'})"
# ============================================================================
# DATA CLASSES
# ============================================================================
@dataclass
class BenchmarkResult:
"""Single benchmark result."""
mean_ms: float
std_ms: float
fps: float
@classmethod
def from_times(cls, times: List[float], batch_size: int = 1):
mean_ms = np.mean(times)
std_ms = np.std(times)
fps = 1000 / mean_ms * batch_size
return cls(mean_ms=mean_ms, std_ms=std_ms, fps=fps)
@dataclass
class OptimizationConfig:
"""Configuration for a specific optimization combination."""
name: str
preprocessing: str # "cpu" or "gpu"
attention: str # "sdpa" or "manual"
description: str
@property
def short_name(self) -> str:
prep = "GPU" if self.preprocessing == "gpu" else "CPU"
attn = "SDPA" if self.attention == "sdpa" else "Manual"
return f"{prep}+{attn}"
# ============================================================================
# BENCHMARK FUNCTIONS
# ============================================================================
def get_optimization_configs(device: torch.device) -> List[OptimizationConfig]:
"""Get all valid optimization configurations for a device."""
configs = []
if device.type == "cuda":
# CUDA: All 4 combinations
configs = [
OptimizationConfig("gpu_sdpa", "gpu", "sdpa", "GPU Decode (NVJPEG) + SDPA (Flash)"),
OptimizationConfig("gpu_manual", "gpu", "manual", "GPU Decode (NVJPEG) + Manual Attn"),
OptimizationConfig("cpu_sdpa", "cpu", "sdpa", "CPU Decode (PIL) + SDPA (Flash)"),
OptimizationConfig("cpu_manual", "cpu", "manual", "CPU Decode (PIL) + Manual Attn"),
]
elif device.type == "mps":
# MPS: CPU preprocessing is better, 2 combinations
configs = [
OptimizationConfig("cpu_sdpa", "cpu", "sdpa", "CPU Decode (PIL) + SDPA"),
OptimizationConfig("cpu_manual", "cpu", "manual", "CPU Decode (PIL) + Manual Attn"),
]
else:
# CPU: 2 combinations
configs = [
OptimizationConfig("cpu_sdpa", "cpu", "sdpa", "SDPA Attention"),
OptimizationConfig("cpu_manual", "cpu", "manual", "Manual Attention"),
]
return configs
def benchmark_preprocessing_detailed(device: torch.device, runs: int = 5) -> Dict:
"""Benchmark preprocessing in detail."""
from depth_anything_3.utils.io.input_processor import InputProcessor
from depth_anything_3.utils.io.gpu_input_processor import GPUInputProcessor
results = {}
temp_dir = "temp_bench_preproc"
sizes = [
("720p", 1280, 720),
("1080p", 1920, 1080),
("4K", 3840, 2160),
]
os.makedirs(temp_dir, exist_ok=True)
try:
cpu_proc = InputProcessor()
gpu_proc = None
if device.type == "cuda":
gpu_proc = GPUInputProcessor(device=device)
for name, w, h in sizes:
results[name] = {}
# Create test files
files = []
pil_imgs = []
for i in range(4):
img = Image.new("RGB", (w, h), color=(100 + i*10, 150, 200))
fpath = f"{temp_dir}/{name}_{i}.jpg"
img.save(fpath, quality=95)
files.append(fpath)
pil_imgs.append(img.copy())
# CPU benchmark
cleanup()
for _ in range(2):
cpu_proc(image=pil_imgs, process_res=518, num_workers=8)
times = []
for _ in range(runs):
start = time.perf_counter()
cpu_proc(image=pil_imgs, process_res=518, num_workers=8)
times.append((time.perf_counter() - start) * 1000)
results[name]["cpu"] = BenchmarkResult.from_times(times, batch_size=4)
# GPU benchmark (NVJPEG for CUDA)
if gpu_proc and gpu_proc.use_gpu:
cleanup()
for _ in range(2):
gpu_proc(image=files, process_res=518, num_workers=1)
sync_device(device)
times = []
for _ in range(runs):
sync_device(device)
start = time.perf_counter()
gpu_proc(image=files, process_res=518, num_workers=1)
sync_device(device)
times.append((time.perf_counter() - start) * 1000)
results[name]["gpu"] = BenchmarkResult.from_times(times, batch_size=4)
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
return results
def benchmark_attention_detailed(device: torch.device, runs: int = 10) -> Dict:
"""Benchmark attention backends in detail."""
from depth_anything_3.model.dinov2.layers import Attention
results = {}
dtype = torch.float16 if device.type == "cuda" else torch.float32
configs = [
("ViT-S (518px)", 384, 6, 529),
("ViT-L (518px)", 1024, 16, 529),
("ViT-L (770px)", 1024, 16, 1156),
]
for name, dim, heads, seq_len in configs:
results[name] = {}
x = torch.randn(1, seq_len, dim, device=device, dtype=dtype)
for backend in ["sdpa", "manual"]:
cleanup()
attn = Attention(dim=dim, num_heads=heads, attn_backend=backend).to(device, dtype)
attn.eval()
# Warmup
with torch.no_grad():
for _ in range(3):
attn(x)
sync_device(device)
# Benchmark
times = []
with torch.no_grad():
for _ in range(runs):
sync_device(device)
start = time.perf_counter()
attn(x)
sync_device(device)
times.append((time.perf_counter() - start) * 1000)
results[name][backend] = BenchmarkResult.from_times(times)
del attn
return results
def benchmark_inference_matrix(
device: torch.device,
models: List[str],
runs: int = 3,
) -> Dict:
"""Benchmark all optimization combinations for inference."""
from depth_anything_3.api import DepthAnything3
results = {}
temp_dir = "temp_bench_infer"
configs = get_optimization_configs(device)
os.makedirs(temp_dir, exist_ok=True)
# Create test images (720p)
img_paths = []
pil_imgs = []
for i in range(4):
img = Image.new("RGB", (1280, 720), color=(100 + i*20, 150, 200))
path = f"{temp_dir}/test_{i}.jpg"
img.save(path, quality=95)
img_paths.append(path)
pil_imgs.append(img.copy())
try:
for model_name in models:
results[model_name] = {}
for config in configs:
cleanup()
# Set attention backend
os.environ["DA3_ATTENTION_BACKEND"] = config.attention
# Load model fresh (to apply attention backend)
model = DepthAnything3(
model_name=model_name,
device=device,
use_cache=False,
)
# Choose input based on preprocessing
if config.preprocessing == "gpu" and device.type == "cuda":
test_input = img_paths[:1] # File paths for NVJPEG
else:
test_input = pil_imgs[:1] # PIL for CPU preprocessing
# Warmup
for _ in range(3):
model.inference(test_input, process_res=518)
sync_device(device)
# Benchmark
times = []
for _ in range(runs):
sync_device(device)
start = time.perf_counter()
model.inference(test_input, process_res=518)
sync_device(device)
times.append((time.perf_counter() - start) * 1000)
results[model_name][config.name] = {
"result": BenchmarkResult.from_times(times, batch_size=1),
"config": config,
}
del model
cleanup()
finally:
shutil.rmtree(temp_dir, ignore_errors=True)
return results
# ============================================================================
# DISPLAY FUNCTIONS
# ============================================================================
def print_header(title: str):
"""Print section header."""
print()
print(colored("β" * 70, Style.CYAN))
print(colored("β", Style.CYAN) + colored(f" {title}", Style.BOLD).center(77) + colored("β", Style.CYAN))
print(colored("β" * 70, Style.CYAN))
def print_subheader(title: str):
"""Print subsection header."""
print()
print(colored(f"βΆ {title}", Style.YELLOW, bold=True))
print(colored("β" * 70, Style.DIM))
def format_speedup(speedup: float) -> str:
"""Format speedup with color."""
if speedup >= 1.5:
return colored(f"{speedup:.2f}x", Style.GREEN, bold=True)
elif speedup >= 1.1:
return colored(f"{speedup:.2f}x", Style.GREEN)
elif speedup >= 0.95:
return f"{speedup:.2f}x"
else:
return colored(f"{speedup:.2f}x", Style.RED)
def print_preprocessing_results(results: Dict, device: torch.device):
"""Print preprocessing benchmark results."""
print_subheader("PREPROCESSING (4 images batch)")
has_gpu = any("gpu" in r for r in results.values())
if has_gpu:
print(f" {'Resolution':<12} {'CPU (PIL)':<14} {'GPU (NVJPEG)':<14} {'Speedup':<10}")
print(f" {'-'*50}")
for name, data in results.items():
cpu_ms = data["cpu"].mean_ms
if "gpu" in data:
gpu_ms = data["gpu"].mean_ms
speedup = cpu_ms / gpu_ms
print(f" {name:<12} {cpu_ms:>8.1f} ms {gpu_ms:>8.1f} ms {format_speedup(speedup)}")
else:
print(f" {name:<12} {cpu_ms:>8.1f} ms {'N/A':<14}")
else:
print(f" {'Resolution':<12} {'CPU (PIL)':<14}")
print(f" {'-'*30}")
for name, data in results.items():
cpu_ms = data["cpu"].mean_ms
print(f" {name:<12} {cpu_ms:>8.1f} ms")
# Summary
if has_gpu:
speedups = []
for data in results.values():
if "gpu" in data:
speedups.append(data["cpu"].mean_ms / data["gpu"].mean_ms)
if speedups:
avg = np.mean(speedups)
print()
print(f" {colored('β', Style.GREEN)} GPU preprocessing avg {colored(f'{avg:.1f}x', Style.GREEN, bold=True)} faster")
def print_attention_results(results: Dict, device: torch.device):
"""Print attention benchmark results."""
print_subheader("ATTENTION (per layer forward pass)")
print(f" {'Config':<18} {'SDPA':<12} {'Manual':<12} {'Speedup':<10}")
print(f" {'-'*52}")
for name, data in results.items():
sdpa_ms = data["sdpa"].mean_ms
manual_ms = data["manual"].mean_ms
speedup = manual_ms / sdpa_ms
print(f" {name:<18} {sdpa_ms:>6.3f} ms {manual_ms:>6.3f} ms {format_speedup(speedup)}")
# Summary
speedups = [d["manual"].mean_ms / d["sdpa"].mean_ms for d in results.values()]
avg = np.mean(speedups)
print()
print(f" {colored('β', Style.GREEN)} SDPA avg {colored(f'{avg:.1f}x', Style.GREEN, bold=True)} faster than manual")
# Check Flash SDP
if device.type == "cuda":
from torch.backends.cuda import flash_sdp_enabled
if flash_sdp_enabled():
print(f" {colored('β', Style.GREEN)} Flash Attention: {colored('ENABLED', Style.GREEN, bold=True)} (PyTorch native)")
def print_inference_matrix(results: Dict, device: torch.device):
"""Print inference benchmark matrix."""
print_subheader("END-TO-END INFERENCE (720p input, batch=1)")
configs = get_optimization_configs(device)
# Header
header = f" {'Model':<12}"
for cfg in configs:
header += f" {cfg.short_name:<14}"
header += " Best"
print(header)
print(f" {'-'*(14 + 15*len(configs) + 6)}")
# Results per model
for model_name, model_results in results.items():
row = f" {model_name:<12}"
best_fps = 0
best_config = None
worst_fps = float('inf')
for cfg in configs:
if cfg.name in model_results:
result = model_results[cfg.name]["result"]
fps = result.fps
row += f" {fps:>6.1f} img/s "
if fps > best_fps:
best_fps = fps
best_config = cfg
if fps < worst_fps:
worst_fps = fps
else:
row += f" {'N/A':<14}"
# Best indicator
if best_config:
row += f" {colored(best_config.short_name, Style.GREEN, bold=True)}"
print(row)
# Summary
print()
print(f" {Style.DIM}Legend: GPU=NVJPEG decode, CPU=PIL decode, SDPA=Flash Attention{Style.RESET}")
def print_device_summary(
device: torch.device,
preproc_results: Dict,
attn_results: Dict,
infer_results: Dict,
):
"""Print summary for a device."""
print()
print(colored("β" * 70, Style.CYAN))
print(colored(f" {device.type.upper()} - OPTIMIZATION SUMMARY", Style.BOLD))
print(colored("β" * 70, Style.CYAN))
# Best configuration
if infer_results:
print()
print(f" {colored('Best configuration per model:', Style.CYAN)}")
for model_name, model_results in infer_results.items():
if not model_results:
continue
best_name = max(model_results.keys(), key=lambda k: model_results[k]["result"].fps)
best = model_results[best_name]
worst_name = min(model_results.keys(), key=lambda k: model_results[k]["result"].fps)
worst = model_results[worst_name]
speedup = best["result"].fps / worst["result"].fps if worst["result"].fps > 0 else 1
print(f" {model_name:<12} {colored(best['config'].description, Style.GREEN)}")
print(f" {'':<12} {best['result'].fps:.1f} img/s ({speedup:.1f}x vs worst)")
# Recommendations
print()
print(f" {colored('Recommendations:', Style.CYAN)}")
if device.type == "cuda":
print(f" β Use {colored('GPU preprocessing (NVJPEG)', Style.GREEN)} for file inputs")
print(f" β {colored('SDPA (Flash Attention)', Style.GREEN)} is enabled by default")
print(f" β Pass file paths (not PIL images) to leverage NVJPEG")
elif device.type == "mps":
print(f" β Use {colored('CPU preprocessing', Style.GREEN)} (faster than GPU on MPS)")
print(f" β {colored('SDPA', Style.GREEN)} provides moderate speedup")
else:
print(f" β {colored('SDPA', Style.GREEN)} provides speedup over manual attention")
print(f" β Consider using GPU (CUDA/MPS) for better performance")
# ============================================================================
# MAIN
# ============================================================================
def main():
parser = argparse.ArgumentParser(
description="DA3 Full Benchmark - Test all optimization combinations",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python benchmarks/full_benchmark.py # Best device only
python benchmarks/full_benchmark.py -d all # All devices
python benchmarks/full_benchmark.py -d cuda # CUDA only
python benchmarks/full_benchmark.py --quick # Quick mode (fewer runs)
python benchmarks/full_benchmark.py --models da3-small da3-large
"""
)
parser.add_argument("--quick", action="store_true", help="Quick mode (fewer runs)")
parser.add_argument("--skip-preprocessing", action="store_true", help="Skip preprocessing benchmark")
parser.add_argument("--skip-attention", action="store_true", help="Skip attention benchmark")
parser.add_argument("--skip-inference", action="store_true", help="Skip inference benchmark")
parser.add_argument("-d", "--device", type=str, default="auto",
choices=["auto", "cpu", "mps", "cuda", "all"],
help="Device to benchmark (default: auto)")
parser.add_argument("--models", nargs="+", default=None,
help="Models to benchmark (default: all)")
args = parser.parse_args()
# Configure runs
runs_preproc = 3 if args.quick else 5
runs_attn = 5 if args.quick else 10
runs_infer = 2 if args.quick else 4
# Determine models
if args.models:
models = args.models
elif args.quick:
models = ["da3-small", "da3-large"]
else:
models = ["da3-small", "da3-base", "da3-large"]
# Determine devices
available_devices = get_available_devices()
if args.device == "auto":
devices_to_test = [available_devices[-1]] # Best available
elif args.device == "all":
devices_to_test = available_devices
else:
requested = torch.device(args.device)
if requested in available_devices:
devices_to_test = [requested]
else:
print(f"Error: Device '{args.device}' not available.")
print(f"Available: {[d.type for d in available_devices]}")
return
# Main header
print()
print(colored("β" + "β" * 68 + "β", Style.CYAN))
print(colored("β", Style.CYAN) + colored(" DEPTH ANYTHING 3 - FULL BENCHMARK", Style.BOLD).center(77) + colored("β", Style.CYAN))
print(colored("β", Style.CYAN) + colored(" All Optimization Combinations", Style.DIM).center(77) + colored("β", Style.CYAN))
print(colored("β" + "β" * 68 + "β", Style.CYAN))
print(f"\n {Style.DIM}PyTorch{Style.RESET} : {colored(torch.__version__, Style.CYAN)}")
print(f" {Style.DIM}Models{Style.RESET} : {colored(', '.join(models), Style.CYAN)}")
print(f" {Style.DIM}Mode{Style.RESET} : {colored('Quick' if args.quick else 'Full', Style.CYAN)}")
print(f"\n {Style.DIM}Available devices:{Style.RESET}")
for d in available_devices:
status = colored("β", Style.GREEN) if d in devices_to_test else colored("β", Style.DIM)
print(f" {status} {d.type.upper():<6} {get_device_name(d)}")
all_results = {}
# Run benchmarks for each device
for device in devices_to_test:
device_name = get_device_name(device)
all_results[device.type] = {}
print_header(f"{device.type.upper()} - {device_name}")
# 1. Preprocessing
preproc_results = {}
if not args.skip_preprocessing and device.type != "cpu":
preproc_results = benchmark_preprocessing_detailed(device, runs=runs_preproc)
all_results[device.type]["preprocessing"] = preproc_results
print_preprocessing_results(preproc_results, device)
elif device.type == "cpu":
print_subheader("PREPROCESSING")
print(f" {Style.DIM}Skipped (CPU only - no GPU comparison){Style.RESET}")
# 2. Attention
attn_results = {}
if not args.skip_attention:
attn_results = benchmark_attention_detailed(device, runs=runs_attn)
all_results[device.type]["attention"] = attn_results
print_attention_results(attn_results, device)
# 3. Inference Matrix
infer_results = {}
if not args.skip_inference:
infer_results = benchmark_inference_matrix(device, models, runs=runs_infer)
all_results[device.type]["inference"] = infer_results
print_inference_matrix(infer_results, device)
# Device Summary
print_device_summary(device, preproc_results, attn_results, infer_results)
cleanup()
# Cross-device comparison
if len(devices_to_test) > 1 and not args.skip_inference:
print_header("CROSS-DEVICE COMPARISON")
# Find common model
common_model = models[-1] # Usually largest tested
print()
print(f" {colored(f'{common_model} (best config per device):', Style.CYAN)}")
print(f" {'Device':<10} {'Config':<30} {'Performance':<15}")
print(f" {'-'*55}")
base_fps = None
for device in devices_to_test:
if device.type in all_results and "inference" in all_results[device.type]:
infer = all_results[device.type]["inference"].get(common_model, {})
if infer:
best_name = max(infer.keys(), key=lambda k: infer[k]["result"].fps)
best = infer[best_name]
fps = best["result"].fps
if base_fps is None:
base_fps = fps
speedup = fps / base_fps if base_fps else 1
speedup_str = f"({speedup:.1f}x)" if device != devices_to_test[0] else "(baseline)"
print(f" {device.type.upper():<10} {best['config'].description:<30} {fps:>5.1f} img/s {speedup_str}")
# Final summary
print()
print(colored("β" * 70, Style.CYAN))
print(colored("β", Style.CYAN) + colored(" BENCHMARK COMPLETE", Style.BOLD).center(77) + colored("β", Style.CYAN))
print(colored("β" * 70, Style.CYAN))
print()
if __name__ == "__main__":
main()
|