Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -20,21 +20,21 @@ def create_summary_metrics():
|
|
| 20 |
metrics = data['metrics']
|
| 21 |
|
| 22 |
summary = f"""
|
| 23 |
-
# CHIMERA Performance Summary
|
| 24 |
-
|
| 25 |
-
## Overall Metrics
|
| 26 |
-
- **Average Speedup:** {metrics['average_speedup']:.1f}x faster than baseline
|
| 27 |
-
- **Maximum Speedup:** {metrics['max_speedup']:.1f}x (best case)
|
| 28 |
-
- **Average Latency:** {metrics['average_latency_ms']:.2f}ms
|
| 29 |
-
- **Energy Efficiency:** {metrics['average_energy_joules']:.3f}J per operation
|
| 30 |
-
- **Efficiency Score:** {metrics['average_efficiency']:.1f} ops/J
|
| 31 |
-
|
| 32 |
-
## Architecture Advantages
|
| 33 |
-
- **Framework Size:** {metrics['framework_size_mb']}MB (99.6% smaller than PyTorch)
|
| 34 |
-
- **Memory Footprint:** {metrics['memory_footprint_mb']}MB (88.7% reduction)
|
| 35 |
-
- **All-in-One GPU:** No CPU/RAM usage - pure GPU processing
|
| 36 |
-
- **Universal Hardware:** Works on NVIDIA, AMD, Intel, Apple M1/M2
|
| 37 |
-
"""
|
| 38 |
|
| 39 |
return summary
|
| 40 |
|
|
@@ -58,8 +58,7 @@ def create_speedup_chart():
|
|
| 58 |
xaxis_title='Benchmark Task',
|
| 59 |
yaxis_title='Speedup Factor (x)',
|
| 60 |
yaxis_type='log',
|
| 61 |
-
height=500
|
| 62 |
-
xaxis_tickangle=-45
|
| 63 |
)
|
| 64 |
|
| 65 |
return fig
|
|
@@ -90,8 +89,7 @@ def create_latency_comparison():
|
|
| 90 |
yaxis_title='Latency (ms)',
|
| 91 |
yaxis_type='log',
|
| 92 |
barmode='group',
|
| 93 |
-
height=500
|
| 94 |
-
xaxis_tickangle=-45
|
| 95 |
)
|
| 96 |
|
| 97 |
return fig
|
|
@@ -105,13 +103,13 @@ def create_energy_efficiency_chart():
|
|
| 105 |
x='energy_joules',
|
| 106 |
y='efficiency_score',
|
| 107 |
size='speedup_factor',
|
| 108 |
-
color='
|
| 109 |
hover_data=['task_name', 'latency_ms', 'power_watts'],
|
| 110 |
title='Energy Efficiency: Lower Energy + Higher Efficiency = Better',
|
| 111 |
labels={
|
| 112 |
'energy_joules': 'Energy Consumption (J)',
|
| 113 |
'efficiency_score': 'Efficiency Score (ops/J)',
|
| 114 |
-
'
|
| 115 |
}
|
| 116 |
)
|
| 117 |
|
|
@@ -119,12 +117,46 @@ def create_energy_efficiency_chart():
|
|
| 119 |
|
| 120 |
return fig
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
def get_detailed_table():
|
| 123 |
"""Create detailed results table"""
|
| 124 |
df = pd.DataFrame(data['benchmarks'])
|
| 125 |
|
| 126 |
table_df = df[[
|
| 127 |
-
'
|
| 128 |
'speedup_factor', 'energy_joules', 'efficiency_score', 'hardware_platform'
|
| 129 |
]].copy()
|
| 130 |
|
|
@@ -149,56 +181,81 @@ with gr.Blocks(title="CHIMERA Benchmark Dashboard", theme=gr.themes.Soft()) as d
|
|
| 149 |
gr.Markdown(create_summary_metrics())
|
| 150 |
|
| 151 |
with gr.Tab("Performance"):
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
with gr.Row():
|
| 155 |
-
gr.Plot(create_latency_comparison())
|
| 156 |
|
| 157 |
with gr.Tab("Energy Efficiency"):
|
| 158 |
gr.Plot(create_energy_efficiency_chart())
|
| 159 |
gr.Markdown("""
|
| 160 |
-
## Energy Efficiency Analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
-
CHIMERA
|
| 163 |
-
-
|
| 164 |
-
-
|
| 165 |
-
-
|
| 166 |
-
-
|
|
|
|
| 167 |
|
| 168 |
-
**
|
| 169 |
-
""")
|
| 170 |
|
| 171 |
with gr.Tab("Detailed Results"):
|
| 172 |
gr.Dataframe(get_detailed_table(), interactive=True)
|
| 173 |
|
| 174 |
with gr.Tab("About"):
|
| 175 |
gr.Markdown(f"""
|
| 176 |
-
## About CHIMERA
|
| 177 |
-
|
| 178 |
-
CHIMERA is a revolutionary all-in-one GPU architecture for artificial intelligence:
|
| 179 |
-
|
| 180 |
-
### Key Innovations
|
| 181 |
-
1. **Everything as Images** - All processing happens as frame-by-frame GPU textures
|
| 182 |
-
2. **Living Brain** - Evolutionary cellular automaton simulates neuromorphic intelligence
|
| 183 |
-
3. **Holographic Memory** - Memory integrated within GPU textures (no RAM needed)
|
| 184 |
-
4. **Pure GPU** - Zero CPU usage during inference
|
| 185 |
-
5. **Universal** - Works on any GPU hardware
|
| 186 |
-
|
| 187 |
-
###
|
| 188 |
-
-
|
| 189 |
-
-
|
| 190 |
-
-
|
| 191 |
-
-
|
| 192 |
-
|
| 193 |
-
###
|
| 194 |
-
-
|
| 195 |
-
-
|
| 196 |
-
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
if __name__ == "__main__":
|
| 204 |
demo.launch()
|
|
|
|
| 20 |
metrics = data['metrics']
|
| 21 |
|
| 22 |
summary = f"""
|
| 23 |
+
# CHIMERA Performance Summary
|
| 24 |
+
|
| 25 |
+
## Overall Metrics
|
| 26 |
+
- **Average Speedup:** {metrics['average_speedup']:.1f}x faster than baseline
|
| 27 |
+
- **Maximum Speedup:** {metrics['max_speedup']:.1f}x (best case)
|
| 28 |
+
- **Average Latency:** {metrics['average_latency_ms']:.2f}ms
|
| 29 |
+
- **Energy Efficiency:** {metrics['average_energy_joules']:.3f}J per operation
|
| 30 |
+
- **Efficiency Score:** {metrics['average_efficiency']:.1f} ops/J
|
| 31 |
+
|
| 32 |
+
## Architecture Advantages
|
| 33 |
+
- **Framework Size:** {metrics['framework_size_mb']}MB (99.6% smaller than PyTorch)
|
| 34 |
+
- **Memory Footprint:** {metrics['memory_footprint_mb']}MB (88.7% reduction)
|
| 35 |
+
- **All-in-One GPU:** No CPU/RAM usage - pure GPU processing
|
| 36 |
+
- **Universal Hardware:** Works on NVIDIA, AMD, Intel, Apple M1/M2
|
| 37 |
+
"""
|
| 38 |
|
| 39 |
return summary
|
| 40 |
|
|
|
|
| 58 |
xaxis_title='Benchmark Task',
|
| 59 |
yaxis_title='Speedup Factor (x)',
|
| 60 |
yaxis_type='log',
|
| 61 |
+
height=500
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
return fig
|
|
|
|
| 89 |
yaxis_title='Latency (ms)',
|
| 90 |
yaxis_type='log',
|
| 91 |
barmode='group',
|
| 92 |
+
height=500
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
return fig
|
|
|
|
| 103 |
x='energy_joules',
|
| 104 |
y='efficiency_score',
|
| 105 |
size='speedup_factor',
|
| 106 |
+
color='benchmark_name',
|
| 107 |
hover_data=['task_name', 'latency_ms', 'power_watts'],
|
| 108 |
title='Energy Efficiency: Lower Energy + Higher Efficiency = Better',
|
| 109 |
labels={
|
| 110 |
'energy_joules': 'Energy Consumption (J)',
|
| 111 |
'efficiency_score': 'Efficiency Score (ops/J)',
|
| 112 |
+
'benchmark_name': 'Benchmark'
|
| 113 |
}
|
| 114 |
)
|
| 115 |
|
|
|
|
| 117 |
|
| 118 |
return fig
|
| 119 |
|
| 120 |
+
def create_hardware_scaling_chart():
|
| 121 |
+
"""Create hardware scalability visualization"""
|
| 122 |
+
# Filter scalability benchmarks
|
| 123 |
+
scaling_df = pd.DataFrame([
|
| 124 |
+
b for b in data['benchmarks']
|
| 125 |
+
if 'Scalability' in b['benchmark_name']
|
| 126 |
+
])
|
| 127 |
+
|
| 128 |
+
if len(scaling_df) == 0:
|
| 129 |
+
return go.Figure().update_layout(title="No scalability data available")
|
| 130 |
+
|
| 131 |
+
fig = go.Figure()
|
| 132 |
+
|
| 133 |
+
for platform in scaling_df['hardware_platform'].unique():
|
| 134 |
+
platform_data = scaling_df[scaling_df['hardware_platform'] == platform]
|
| 135 |
+
|
| 136 |
+
fig.add_trace(go.Bar(
|
| 137 |
+
name=platform,
|
| 138 |
+
x=['Latency', 'Power'],
|
| 139 |
+
y=[
|
| 140 |
+
platform_data['latency_ms'].values[0],
|
| 141 |
+
platform_data['power_watts'].values[0]
|
| 142 |
+
]
|
| 143 |
+
))
|
| 144 |
+
|
| 145 |
+
fig.update_layout(
|
| 146 |
+
title='Hardware Scalability: CHIMERA Performance Across Platforms',
|
| 147 |
+
yaxis_title='Value',
|
| 148 |
+
barmode='group',
|
| 149 |
+
height=500
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
return fig
|
| 153 |
+
|
| 154 |
def get_detailed_table():
|
| 155 |
"""Create detailed results table"""
|
| 156 |
df = pd.DataFrame(data['benchmarks'])
|
| 157 |
|
| 158 |
table_df = df[[
|
| 159 |
+
'benchmark_name', 'task_name', 'latency_ms', 'throughput_qps',
|
| 160 |
'speedup_factor', 'energy_joules', 'efficiency_score', 'hardware_platform'
|
| 161 |
]].copy()
|
| 162 |
|
|
|
|
| 181 |
gr.Markdown(create_summary_metrics())
|
| 182 |
|
| 183 |
with gr.Tab("Performance"):
|
| 184 |
+
gr.Plot(create_speedup_chart())
|
| 185 |
+
gr.Plot(create_latency_comparison())
|
|
|
|
|
|
|
| 186 |
|
| 187 |
with gr.Tab("Energy Efficiency"):
|
| 188 |
gr.Plot(create_energy_efficiency_chart())
|
| 189 |
gr.Markdown("""
|
| 190 |
+
## Energy Efficiency Analysis
|
| 191 |
+
|
| 192 |
+
CHIMERA achieves exceptional energy efficiency through:
|
| 193 |
+
- **All-in-one GPU processing** - No CPU/RAM overhead
|
| 194 |
+
- **Holographic memory** - Data stays in GPU textures
|
| 195 |
+
- **Frame-by-frame simulation** - Efficient neuromorphic computation
|
| 196 |
+
- **Minimal framework size** - 10MB vs 2.5GB for PyTorch
|
| 197 |
+
|
| 198 |
+
**Average energy savings: 92.7% vs baseline frameworks**
|
| 199 |
+
""")
|
| 200 |
+
|
| 201 |
+
with gr.Tab("Hardware Scalability"):
|
| 202 |
+
gr.Plot(create_hardware_scaling_chart())
|
| 203 |
+
gr.Markdown("""
|
| 204 |
+
## Universal Hardware Support
|
| 205 |
|
| 206 |
+
CHIMERA works on any GPU with OpenGL 4.3+:
|
| 207 |
+
- NVIDIA GeForce/RTX (CUDA 11.0+)
|
| 208 |
+
- AMD Radeon (OpenGL 4.6)
|
| 209 |
+
- Intel UHD/Iris (OpenGL 4.5)
|
| 210 |
+
- Apple M1/M2 (Metal backend)
|
| 211 |
+
- Raspberry Pi 4 (OpenGL 3.3)
|
| 212 |
|
| 213 |
+
**No vendor lock-in - truly universal AI acceleration**
|
| 214 |
+
""")
|
| 215 |
|
| 216 |
with gr.Tab("Detailed Results"):
|
| 217 |
gr.Dataframe(get_detailed_table(), interactive=True)
|
| 218 |
|
| 219 |
with gr.Tab("About"):
|
| 220 |
gr.Markdown(f"""
|
| 221 |
+
## About CHIMERA
|
| 222 |
+
|
| 223 |
+
CHIMERA is a revolutionary all-in-one GPU architecture for artificial intelligence:
|
| 224 |
+
|
| 225 |
+
### Key Innovations
|
| 226 |
+
1. **Everything as Images** - All processing happens as frame-by-frame GPU textures
|
| 227 |
+
2. **Living Brain** - Evolutionary cellular automaton simulates neuromorphic intelligence
|
| 228 |
+
3. **Holographic Memory** - Memory integrated within GPU textures (no RAM needed)
|
| 229 |
+
4. **Pure GPU** - Zero CPU usage during inference
|
| 230 |
+
5. **Universal** - Works on any GPU hardware
|
| 231 |
+
|
| 232 |
+
### Architecture Principles
|
| 233 |
+
- **Neuromorphic simulation** in every frame
|
| 234 |
+
- **Cellular automaton** creates emergent intelligence
|
| 235 |
+
- **Holographic encoding** for efficient memory
|
| 236 |
+
- **OpenGL compute shaders** for universal compatibility
|
| 237 |
+
|
| 238 |
+
### Performance Highlights
|
| 239 |
+
- Average {data['metrics']['average_speedup']:.1f}x speedup
|
| 240 |
+
- 88.7% memory reduction
|
| 241 |
+
- 92.7% energy savings
|
| 242 |
+
- 10MB framework (vs 2.5GB PyTorch)
|
| 243 |
+
|
| 244 |
+
### Repository
|
| 245 |
+
- GitHub: [CHIMERA Architecture](https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture)
|
| 246 |
+
- Author: Francisco Angulo de Lafuente
|
| 247 |
+
- Version: {data['model_name']}
|
| 248 |
+
|
| 249 |
+
### Citation
|
| 250 |
+
```
|
| 251 |
+
@software{{chimera2025,
|
| 252 |
+
title={{CHIMERA: All-in-One GPU Neuromorphic Architecture}},
|
| 253 |
+
author={{Angulo de Lafuente, Francisco}},
|
| 254 |
+
year={{2025}},
|
| 255 |
+
url={{https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture}}
|
| 256 |
+
}}
|
| 257 |
+
```
|
| 258 |
+
""")
|
| 259 |
|
| 260 |
if __name__ == "__main__":
|
| 261 |
demo.launch()
|