Agnuxo commited on
Commit
1d7e876
·
verified ·
1 Parent(s): 8bf99db

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +117 -60
app.py CHANGED
@@ -20,21 +20,21 @@ def create_summary_metrics():
20
  metrics = data['metrics']
21
 
22
  summary = f"""
23
- # CHIMERA Performance Summary
24
-
25
- ## Overall Metrics
26
- - **Average Speedup:** {metrics['average_speedup']:.1f}x faster than baseline
27
- - **Maximum Speedup:** {metrics['max_speedup']:.1f}x (best case)
28
- - **Average Latency:** {metrics['average_latency_ms']:.2f}ms
29
- - **Energy Efficiency:** {metrics['average_energy_joules']:.3f}J per operation
30
- - **Efficiency Score:** {metrics['average_efficiency']:.1f} ops/J
31
-
32
- ## Architecture Advantages
33
- - **Framework Size:** {metrics['framework_size_mb']}MB (99.6% smaller than PyTorch)
34
- - **Memory Footprint:** {metrics['memory_footprint_mb']}MB (88.7% reduction)
35
- - **All-in-One GPU:** No CPU/RAM usage - pure GPU processing
36
- - **Universal Hardware:** Works on NVIDIA, AMD, Intel, Apple M1/M2
37
- """
38
 
39
  return summary
40
 
@@ -58,8 +58,7 @@ def create_speedup_chart():
58
  xaxis_title='Benchmark Task',
59
  yaxis_title='Speedup Factor (x)',
60
  yaxis_type='log',
61
- height=500,
62
- xaxis_tickangle=-45
63
  )
64
 
65
  return fig
@@ -90,8 +89,7 @@ def create_latency_comparison():
90
  yaxis_title='Latency (ms)',
91
  yaxis_type='log',
92
  barmode='group',
93
- height=500,
94
- xaxis_tickangle=-45
95
  )
96
 
97
  return fig
@@ -105,13 +103,13 @@ def create_energy_efficiency_chart():
105
  x='energy_joules',
106
  y='efficiency_score',
107
  size='speedup_factor',
108
- color='benchmark_suite',
109
  hover_data=['task_name', 'latency_ms', 'power_watts'],
110
  title='Energy Efficiency: Lower Energy + Higher Efficiency = Better',
111
  labels={
112
  'energy_joules': 'Energy Consumption (J)',
113
  'efficiency_score': 'Efficiency Score (ops/J)',
114
- 'benchmark_suite': 'Benchmark Suite'
115
  }
116
  )
117
 
@@ -119,12 +117,46 @@ def create_energy_efficiency_chart():
119
 
120
  return fig
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  def get_detailed_table():
123
  """Create detailed results table"""
124
  df = pd.DataFrame(data['benchmarks'])
125
 
126
  table_df = df[[
127
- 'benchmark_suite', 'task_name', 'latency_ms', 'throughput_qps',
128
  'speedup_factor', 'energy_joules', 'efficiency_score', 'hardware_platform'
129
  ]].copy()
130
 
@@ -149,56 +181,81 @@ with gr.Blocks(title="CHIMERA Benchmark Dashboard", theme=gr.themes.Soft()) as d
149
  gr.Markdown(create_summary_metrics())
150
 
151
  with gr.Tab("Performance"):
152
- with gr.Row():
153
- gr.Plot(create_speedup_chart())
154
- with gr.Row():
155
- gr.Plot(create_latency_comparison())
156
 
157
  with gr.Tab("Energy Efficiency"):
158
  gr.Plot(create_energy_efficiency_chart())
159
  gr.Markdown("""
160
- ## Energy Efficiency Analysis
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
 
162
- CHIMERA achieves exceptional energy efficiency through:
163
- - **All-in-one GPU processing** - No CPU/RAM overhead
164
- - **Holographic memory** - Data stays in GPU textures
165
- - **Frame-by-frame simulation** - Efficient neuromorphic computation
166
- - **Minimal framework size** - 10MB vs 2.5GB for PyTorch
 
167
 
168
- **Average energy savings: 92.7% vs baseline frameworks**
169
- """)
170
 
171
  with gr.Tab("Detailed Results"):
172
  gr.Dataframe(get_detailed_table(), interactive=True)
173
 
174
  with gr.Tab("About"):
175
  gr.Markdown(f"""
176
- ## About CHIMERA
177
-
178
- CHIMERA is a revolutionary all-in-one GPU architecture for artificial intelligence:
179
-
180
- ### Key Innovations
181
- 1. **Everything as Images** - All processing happens as frame-by-frame GPU textures
182
- 2. **Living Brain** - Evolutionary cellular automaton simulates neuromorphic intelligence
183
- 3. **Holographic Memory** - Memory integrated within GPU textures (no RAM needed)
184
- 4. **Pure GPU** - Zero CPU usage during inference
185
- 5. **Universal** - Works on any GPU hardware
186
-
187
- ### Performance Highlights
188
- - Average {data['metrics']['average_speedup']:.1f}x speedup
189
- - 88.7% memory reduction
190
- - 92.7% energy savings
191
- - 10MB framework (vs 2.5GB PyTorch)
192
-
193
- ### Repository
194
- - GitHub: [CHIMERA Architecture](https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture)
195
- - Author: Francisco Angulo de Lafuente
196
- - Version: {data['model_name']}
197
-
198
- ### Public Benchmarks
199
- - OpenML Dataset: [Dataset 47101](https://www.openml.org/d/47101)
200
- - Weights & Biases: [Dashboard](https://wandb.ai/lareliquia-angulo-agnuxo/chimera-public-benchmarks)
201
- """)
 
 
 
 
 
 
 
 
 
 
 
 
202
 
203
  if __name__ == "__main__":
204
  demo.launch()
 
20
  metrics = data['metrics']
21
 
22
  summary = f"""
23
+ # CHIMERA Performance Summary
24
+
25
+ ## Overall Metrics
26
+ - **Average Speedup:** {metrics['average_speedup']:.1f}x faster than baseline
27
+ - **Maximum Speedup:** {metrics['max_speedup']:.1f}x (best case)
28
+ - **Average Latency:** {metrics['average_latency_ms']:.2f}ms
29
+ - **Energy Efficiency:** {metrics['average_energy_joules']:.3f}J per operation
30
+ - **Efficiency Score:** {metrics['average_efficiency']:.1f} ops/J
31
+
32
+ ## Architecture Advantages
33
+ - **Framework Size:** {metrics['framework_size_mb']}MB (99.6% smaller than PyTorch)
34
+ - **Memory Footprint:** {metrics['memory_footprint_mb']}MB (88.7% reduction)
35
+ - **All-in-One GPU:** No CPU/RAM usage - pure GPU processing
36
+ - **Universal Hardware:** Works on NVIDIA, AMD, Intel, Apple M1/M2
37
+ """
38
 
39
  return summary
40
 
 
58
  xaxis_title='Benchmark Task',
59
  yaxis_title='Speedup Factor (x)',
60
  yaxis_type='log',
61
+ height=500
 
62
  )
63
 
64
  return fig
 
89
  yaxis_title='Latency (ms)',
90
  yaxis_type='log',
91
  barmode='group',
92
+ height=500
 
93
  )
94
 
95
  return fig
 
103
  x='energy_joules',
104
  y='efficiency_score',
105
  size='speedup_factor',
106
+ color='benchmark_name',
107
  hover_data=['task_name', 'latency_ms', 'power_watts'],
108
  title='Energy Efficiency: Lower Energy + Higher Efficiency = Better',
109
  labels={
110
  'energy_joules': 'Energy Consumption (J)',
111
  'efficiency_score': 'Efficiency Score (ops/J)',
112
+ 'benchmark_name': 'Benchmark'
113
  }
114
  )
115
 
 
117
 
118
  return fig
119
 
120
+ def create_hardware_scaling_chart():
121
+ """Create hardware scalability visualization"""
122
+ # Filter scalability benchmarks
123
+ scaling_df = pd.DataFrame([
124
+ b for b in data['benchmarks']
125
+ if 'Scalability' in b['benchmark_name']
126
+ ])
127
+
128
+ if len(scaling_df) == 0:
129
+ return go.Figure().update_layout(title="No scalability data available")
130
+
131
+ fig = go.Figure()
132
+
133
+ for platform in scaling_df['hardware_platform'].unique():
134
+ platform_data = scaling_df[scaling_df['hardware_platform'] == platform]
135
+
136
+ fig.add_trace(go.Bar(
137
+ name=platform,
138
+ x=['Latency', 'Power'],
139
+ y=[
140
+ platform_data['latency_ms'].values[0],
141
+ platform_data['power_watts'].values[0]
142
+ ]
143
+ ))
144
+
145
+ fig.update_layout(
146
+ title='Hardware Scalability: CHIMERA Performance Across Platforms',
147
+ yaxis_title='Value',
148
+ barmode='group',
149
+ height=500
150
+ )
151
+
152
+ return fig
153
+
154
  def get_detailed_table():
155
  """Create detailed results table"""
156
  df = pd.DataFrame(data['benchmarks'])
157
 
158
  table_df = df[[
159
+ 'benchmark_name', 'task_name', 'latency_ms', 'throughput_qps',
160
  'speedup_factor', 'energy_joules', 'efficiency_score', 'hardware_platform'
161
  ]].copy()
162
 
 
181
  gr.Markdown(create_summary_metrics())
182
 
183
  with gr.Tab("Performance"):
184
+ gr.Plot(create_speedup_chart())
185
+ gr.Plot(create_latency_comparison())
 
 
186
 
187
  with gr.Tab("Energy Efficiency"):
188
  gr.Plot(create_energy_efficiency_chart())
189
  gr.Markdown("""
190
+ ## Energy Efficiency Analysis
191
+
192
+ CHIMERA achieves exceptional energy efficiency through:
193
+ - **All-in-one GPU processing** - No CPU/RAM overhead
194
+ - **Holographic memory** - Data stays in GPU textures
195
+ - **Frame-by-frame simulation** - Efficient neuromorphic computation
196
+ - **Minimal framework size** - 10MB vs 2.5GB for PyTorch
197
+
198
+ **Average energy savings: 92.7% vs baseline frameworks**
199
+ """)
200
+
201
+ with gr.Tab("Hardware Scalability"):
202
+ gr.Plot(create_hardware_scaling_chart())
203
+ gr.Markdown("""
204
+ ## Universal Hardware Support
205
 
206
+ CHIMERA works on any GPU with OpenGL 4.3+:
207
+ - NVIDIA GeForce/RTX (CUDA 11.0+)
208
+ - AMD Radeon (OpenGL 4.6)
209
+ - Intel UHD/Iris (OpenGL 4.5)
210
+ - Apple M1/M2 (Metal backend)
211
+ - Raspberry Pi 4 (OpenGL 3.3)
212
 
213
+ **No vendor lock-in - truly universal AI acceleration**
214
+ """)
215
 
216
  with gr.Tab("Detailed Results"):
217
  gr.Dataframe(get_detailed_table(), interactive=True)
218
 
219
  with gr.Tab("About"):
220
  gr.Markdown(f"""
221
+ ## About CHIMERA
222
+
223
+ CHIMERA is a revolutionary all-in-one GPU architecture for artificial intelligence:
224
+
225
+ ### Key Innovations
226
+ 1. **Everything as Images** - All processing happens as frame-by-frame GPU textures
227
+ 2. **Living Brain** - Evolutionary cellular automaton simulates neuromorphic intelligence
228
+ 3. **Holographic Memory** - Memory integrated within GPU textures (no RAM needed)
229
+ 4. **Pure GPU** - Zero CPU usage during inference
230
+ 5. **Universal** - Works on any GPU hardware
231
+
232
+ ### Architecture Principles
233
+ - **Neuromorphic simulation** in every frame
234
+ - **Cellular automaton** creates emergent intelligence
235
+ - **Holographic encoding** for efficient memory
236
+ - **OpenGL compute shaders** for universal compatibility
237
+
238
+ ### Performance Highlights
239
+ - Average {data['metrics']['average_speedup']:.1f}x speedup
240
+ - 88.7% memory reduction
241
+ - 92.7% energy savings
242
+ - 10MB framework (vs 2.5GB PyTorch)
243
+
244
+ ### Repository
245
+ - GitHub: [CHIMERA Architecture](https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture)
246
+ - Author: Francisco Angulo de Lafuente
247
+ - Version: {data['model_name']}
248
+
249
+ ### Citation
250
+ ```
251
+ @software{{chimera2025,
252
+ title={{CHIMERA: All-in-One GPU Neuromorphic Architecture}},
253
+ author={{Angulo de Lafuente, Francisco}},
254
+ year={{2025}},
255
+ url={{https://github.com/Agnuxo1/CHIMERA-Revolutionary-AI-Architecture}}
256
+ }}
257
+ ```
258
+ """)
259
 
260
  if __name__ == "__main__":
261
  demo.launch()