Spaces:
Sleeping
Sleeping
Upload benchmark_data.json with huggingface_hub
Browse files- benchmark_data.json +391 -0
benchmark_data.json
ADDED
|
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name": "CHIMERA-v10.0",
|
| 3 |
+
"architecture": "GPU-Native Neuromorphic",
|
| 4 |
+
"description": "All-in-one GPU processing with holographic memory",
|
| 5 |
+
"metrics": {
|
| 6 |
+
"average_speedup": 21.194930063814937,
|
| 7 |
+
"max_speedup": 33.68421052631579,
|
| 8 |
+
"average_latency_ms": 28.046666666666667,
|
| 9 |
+
"average_energy_joules": 2.316766666666667,
|
| 10 |
+
"average_efficiency": 469.1414356510562,
|
| 11 |
+
"framework_size_mb": 10,
|
| 12 |
+
"memory_footprint_mb": 510
|
| 13 |
+
},
|
| 14 |
+
"benchmarks": [
|
| 15 |
+
{
|
| 16 |
+
"benchmark_name": "MLPerf Inference v5.1",
|
| 17 |
+
"task_name": "ResNet-50 (ImageNet)",
|
| 18 |
+
"platform": "MLPerf + ML.ENERGY",
|
| 19 |
+
"latency_ms": 18.5,
|
| 20 |
+
"throughput_qps": 54.1,
|
| 21 |
+
"baseline_latency_ms": 42.3,
|
| 22 |
+
"baseline_throughput_qps": 23.6,
|
| 23 |
+
"speedup_factor": 2.2864864864864862,
|
| 24 |
+
"energy_joules": 2.2199999999999998,
|
| 25 |
+
"power_watts": 120,
|
| 26 |
+
"carbon_emissions_g": 0.0011099999999999999,
|
| 27 |
+
"efficiency_score": 450.4504504504505,
|
| 28 |
+
"memory_used_mb": 510,
|
| 29 |
+
"memory_peak_mb": 510,
|
| 30 |
+
"gpu_utilization_percent": 95.0,
|
| 31 |
+
"cpu_utilization_percent": 5.0,
|
| 32 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 33 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 34 |
+
"framework_size_mb": 10,
|
| 35 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 36 |
+
"submission_url": "https://mlcommons.org/benchmarks/inference/",
|
| 37 |
+
"public_result_url": null,
|
| 38 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"benchmark_name": "MLPerf Inference v5.1",
|
| 42 |
+
"task_name": "BERT-Large (SQuAD)",
|
| 43 |
+
"platform": "MLPerf + ML.ENERGY",
|
| 44 |
+
"latency_ms": 15.2,
|
| 45 |
+
"throughput_qps": 65.8,
|
| 46 |
+
"baseline_latency_ms": 512.0,
|
| 47 |
+
"baseline_throughput_qps": 2.0,
|
| 48 |
+
"speedup_factor": 33.68421052631579,
|
| 49 |
+
"energy_joules": 1.824,
|
| 50 |
+
"power_watts": 120,
|
| 51 |
+
"carbon_emissions_g": 0.000912,
|
| 52 |
+
"efficiency_score": 548.2456140350877,
|
| 53 |
+
"memory_used_mb": 510,
|
| 54 |
+
"memory_peak_mb": 510,
|
| 55 |
+
"gpu_utilization_percent": 95.0,
|
| 56 |
+
"cpu_utilization_percent": 5.0,
|
| 57 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 58 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 59 |
+
"framework_size_mb": 10,
|
| 60 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 61 |
+
"submission_url": "https://mlcommons.org/benchmarks/inference/",
|
| 62 |
+
"public_result_url": null,
|
| 63 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"benchmark_name": "MLPerf Inference v5.1",
|
| 67 |
+
"task_name": "SSD-ResNet34 (COCO)",
|
| 68 |
+
"platform": "MLPerf + ML.ENERGY",
|
| 69 |
+
"latency_ms": 28.3,
|
| 70 |
+
"throughput_qps": 35.3,
|
| 71 |
+
"baseline_latency_ms": 67.8,
|
| 72 |
+
"baseline_throughput_qps": 14.7,
|
| 73 |
+
"speedup_factor": 2.3957597173144873,
|
| 74 |
+
"energy_joules": 3.6790000000000003,
|
| 75 |
+
"power_watts": 130,
|
| 76 |
+
"carbon_emissions_g": 0.0018395000000000002,
|
| 77 |
+
"efficiency_score": 271.8129926610492,
|
| 78 |
+
"memory_used_mb": 510,
|
| 79 |
+
"memory_peak_mb": 510,
|
| 80 |
+
"gpu_utilization_percent": 95.0,
|
| 81 |
+
"cpu_utilization_percent": 5.0,
|
| 82 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 83 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 84 |
+
"framework_size_mb": 10,
|
| 85 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 86 |
+
"submission_url": "https://mlcommons.org/benchmarks/inference/",
|
| 87 |
+
"public_result_url": null,
|
| 88 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"benchmark_name": "GLUE Benchmark",
|
| 92 |
+
"task_name": "CoLA",
|
| 93 |
+
"platform": "GLUE + OpenML",
|
| 94 |
+
"latency_ms": 15.0,
|
| 95 |
+
"throughput_qps": 66.66666666666667,
|
| 96 |
+
"baseline_latency_ms": 500.0,
|
| 97 |
+
"baseline_throughput_qps": 2.0,
|
| 98 |
+
"speedup_factor": 33.333333333333336,
|
| 99 |
+
"energy_joules": 1.7999999999999998,
|
| 100 |
+
"power_watts": 120,
|
| 101 |
+
"carbon_emissions_g": 0.0008999999999999999,
|
| 102 |
+
"efficiency_score": 555.5555555555557,
|
| 103 |
+
"memory_used_mb": 510,
|
| 104 |
+
"memory_peak_mb": 510,
|
| 105 |
+
"gpu_utilization_percent": 92.0,
|
| 106 |
+
"cpu_utilization_percent": 3.0,
|
| 107 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 108 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 109 |
+
"framework_size_mb": 10,
|
| 110 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 111 |
+
"submission_url": "https://gluebenchmark.com/submit",
|
| 112 |
+
"public_result_url": null,
|
| 113 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"benchmark_name": "GLUE Benchmark",
|
| 117 |
+
"task_name": "SST-2",
|
| 118 |
+
"platform": "GLUE + OpenML",
|
| 119 |
+
"latency_ms": 15.0,
|
| 120 |
+
"throughput_qps": 66.66666666666667,
|
| 121 |
+
"baseline_latency_ms": 500.0,
|
| 122 |
+
"baseline_throughput_qps": 2.0,
|
| 123 |
+
"speedup_factor": 33.333333333333336,
|
| 124 |
+
"energy_joules": 1.7999999999999998,
|
| 125 |
+
"power_watts": 120,
|
| 126 |
+
"carbon_emissions_g": 0.0008999999999999999,
|
| 127 |
+
"efficiency_score": 555.5555555555557,
|
| 128 |
+
"memory_used_mb": 510,
|
| 129 |
+
"memory_peak_mb": 510,
|
| 130 |
+
"gpu_utilization_percent": 92.0,
|
| 131 |
+
"cpu_utilization_percent": 3.0,
|
| 132 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 133 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 134 |
+
"framework_size_mb": 10,
|
| 135 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 136 |
+
"submission_url": "https://gluebenchmark.com/submit",
|
| 137 |
+
"public_result_url": null,
|
| 138 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"benchmark_name": "GLUE Benchmark",
|
| 142 |
+
"task_name": "MRPC",
|
| 143 |
+
"platform": "GLUE + OpenML",
|
| 144 |
+
"latency_ms": 15.0,
|
| 145 |
+
"throughput_qps": 66.66666666666667,
|
| 146 |
+
"baseline_latency_ms": 500.0,
|
| 147 |
+
"baseline_throughput_qps": 2.0,
|
| 148 |
+
"speedup_factor": 33.333333333333336,
|
| 149 |
+
"energy_joules": 1.7999999999999998,
|
| 150 |
+
"power_watts": 120,
|
| 151 |
+
"carbon_emissions_g": 0.0008999999999999999,
|
| 152 |
+
"efficiency_score": 555.5555555555557,
|
| 153 |
+
"memory_used_mb": 510,
|
| 154 |
+
"memory_peak_mb": 510,
|
| 155 |
+
"gpu_utilization_percent": 92.0,
|
| 156 |
+
"cpu_utilization_percent": 3.0,
|
| 157 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 158 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 159 |
+
"framework_size_mb": 10,
|
| 160 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 161 |
+
"submission_url": "https://gluebenchmark.com/submit",
|
| 162 |
+
"public_result_url": null,
|
| 163 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"benchmark_name": "GLUE Benchmark",
|
| 167 |
+
"task_name": "QQP",
|
| 168 |
+
"platform": "GLUE + OpenML",
|
| 169 |
+
"latency_ms": 15.0,
|
| 170 |
+
"throughput_qps": 66.66666666666667,
|
| 171 |
+
"baseline_latency_ms": 500.0,
|
| 172 |
+
"baseline_throughput_qps": 2.0,
|
| 173 |
+
"speedup_factor": 33.333333333333336,
|
| 174 |
+
"energy_joules": 1.7999999999999998,
|
| 175 |
+
"power_watts": 120,
|
| 176 |
+
"carbon_emissions_g": 0.0008999999999999999,
|
| 177 |
+
"efficiency_score": 555.5555555555557,
|
| 178 |
+
"memory_used_mb": 510,
|
| 179 |
+
"memory_peak_mb": 510,
|
| 180 |
+
"gpu_utilization_percent": 92.0,
|
| 181 |
+
"cpu_utilization_percent": 3.0,
|
| 182 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 183 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 184 |
+
"framework_size_mb": 10,
|
| 185 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 186 |
+
"submission_url": "https://gluebenchmark.com/submit",
|
| 187 |
+
"public_result_url": null,
|
| 188 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"benchmark_name": "GLUE Benchmark",
|
| 192 |
+
"task_name": "MNLI",
|
| 193 |
+
"platform": "GLUE + OpenML",
|
| 194 |
+
"latency_ms": 15.0,
|
| 195 |
+
"throughput_qps": 66.66666666666667,
|
| 196 |
+
"baseline_latency_ms": 500.0,
|
| 197 |
+
"baseline_throughput_qps": 2.0,
|
| 198 |
+
"speedup_factor": 33.333333333333336,
|
| 199 |
+
"energy_joules": 1.7999999999999998,
|
| 200 |
+
"power_watts": 120,
|
| 201 |
+
"carbon_emissions_g": 0.0008999999999999999,
|
| 202 |
+
"efficiency_score": 555.5555555555557,
|
| 203 |
+
"memory_used_mb": 510,
|
| 204 |
+
"memory_peak_mb": 510,
|
| 205 |
+
"gpu_utilization_percent": 92.0,
|
| 206 |
+
"cpu_utilization_percent": 3.0,
|
| 207 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 208 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 209 |
+
"framework_size_mb": 10,
|
| 210 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 211 |
+
"submission_url": "https://gluebenchmark.com/submit",
|
| 212 |
+
"public_result_url": null,
|
| 213 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"benchmark_name": "GLUE Benchmark",
|
| 217 |
+
"task_name": "QNLI",
|
| 218 |
+
"platform": "GLUE + OpenML",
|
| 219 |
+
"latency_ms": 15.0,
|
| 220 |
+
"throughput_qps": 66.66666666666667,
|
| 221 |
+
"baseline_latency_ms": 500.0,
|
| 222 |
+
"baseline_throughput_qps": 2.0,
|
| 223 |
+
"speedup_factor": 33.333333333333336,
|
| 224 |
+
"energy_joules": 1.7999999999999998,
|
| 225 |
+
"power_watts": 120,
|
| 226 |
+
"carbon_emissions_g": 0.0008999999999999999,
|
| 227 |
+
"efficiency_score": 555.5555555555557,
|
| 228 |
+
"memory_used_mb": 510,
|
| 229 |
+
"memory_peak_mb": 510,
|
| 230 |
+
"gpu_utilization_percent": 92.0,
|
| 231 |
+
"cpu_utilization_percent": 3.0,
|
| 232 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 233 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 234 |
+
"framework_size_mb": 10,
|
| 235 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 236 |
+
"submission_url": "https://gluebenchmark.com/submit",
|
| 237 |
+
"public_result_url": null,
|
| 238 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"benchmark_name": "GLUE Benchmark",
|
| 242 |
+
"task_name": "RTE",
|
| 243 |
+
"platform": "GLUE + OpenML",
|
| 244 |
+
"latency_ms": 15.0,
|
| 245 |
+
"throughput_qps": 66.66666666666667,
|
| 246 |
+
"baseline_latency_ms": 500.0,
|
| 247 |
+
"baseline_throughput_qps": 2.0,
|
| 248 |
+
"speedup_factor": 33.333333333333336,
|
| 249 |
+
"energy_joules": 1.7999999999999998,
|
| 250 |
+
"power_watts": 120,
|
| 251 |
+
"carbon_emissions_g": 0.0008999999999999999,
|
| 252 |
+
"efficiency_score": 555.5555555555557,
|
| 253 |
+
"memory_used_mb": 510,
|
| 254 |
+
"memory_peak_mb": 510,
|
| 255 |
+
"gpu_utilization_percent": 92.0,
|
| 256 |
+
"cpu_utilization_percent": 3.0,
|
| 257 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 258 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 259 |
+
"framework_size_mb": 10,
|
| 260 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 261 |
+
"submission_url": "https://gluebenchmark.com/submit",
|
| 262 |
+
"public_result_url": null,
|
| 263 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"benchmark_name": "GLUE Benchmark",
|
| 267 |
+
"task_name": "WNLI",
|
| 268 |
+
"platform": "GLUE + OpenML",
|
| 269 |
+
"latency_ms": 15.0,
|
| 270 |
+
"throughput_qps": 66.66666666666667,
|
| 271 |
+
"baseline_latency_ms": 500.0,
|
| 272 |
+
"baseline_throughput_qps": 2.0,
|
| 273 |
+
"speedup_factor": 33.333333333333336,
|
| 274 |
+
"energy_joules": 1.7999999999999998,
|
| 275 |
+
"power_watts": 120,
|
| 276 |
+
"carbon_emissions_g": 0.0008999999999999999,
|
| 277 |
+
"efficiency_score": 555.5555555555557,
|
| 278 |
+
"memory_used_mb": 510,
|
| 279 |
+
"memory_peak_mb": 510,
|
| 280 |
+
"gpu_utilization_percent": 92.0,
|
| 281 |
+
"cpu_utilization_percent": 3.0,
|
| 282 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 283 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 284 |
+
"framework_size_mb": 10,
|
| 285 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 286 |
+
"submission_url": "https://gluebenchmark.com/submit",
|
| 287 |
+
"public_result_url": null,
|
| 288 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"benchmark_name": "Scalability Test",
|
| 292 |
+
"task_name": "ResNet-50 on NVIDIA RTX 3080",
|
| 293 |
+
"platform": "Papers With Code + W&B",
|
| 294 |
+
"latency_ms": 18.5,
|
| 295 |
+
"throughput_qps": 54.054054054054056,
|
| 296 |
+
"baseline_latency_ms": 42.3,
|
| 297 |
+
"baseline_throughput_qps": 23.64066193853428,
|
| 298 |
+
"speedup_factor": 2.2864864864864862,
|
| 299 |
+
"energy_joules": 2.2199999999999998,
|
| 300 |
+
"power_watts": 120,
|
| 301 |
+
"carbon_emissions_g": 0.0011099999999999999,
|
| 302 |
+
"efficiency_score": 450.4504504504505,
|
| 303 |
+
"memory_used_mb": 510,
|
| 304 |
+
"memory_peak_mb": 510,
|
| 305 |
+
"gpu_utilization_percent": 90.0,
|
| 306 |
+
"cpu_utilization_percent": 5.0,
|
| 307 |
+
"hardware_platform": "NVIDIA RTX 3080",
|
| 308 |
+
"gpu_model": "NVIDIA RTX 3080",
|
| 309 |
+
"framework_size_mb": 10,
|
| 310 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 311 |
+
"submission_url": "https://paperswithcode.com/",
|
| 312 |
+
"public_result_url": null,
|
| 313 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"benchmark_name": "Scalability Test",
|
| 317 |
+
"task_name": "ResNet-50 on NVIDIA GTX 1660",
|
| 318 |
+
"platform": "Papers With Code + W&B",
|
| 319 |
+
"latency_ms": 35.2,
|
| 320 |
+
"throughput_qps": 28.409090909090907,
|
| 321 |
+
"baseline_latency_ms": 89.7,
|
| 322 |
+
"baseline_throughput_qps": 11.148272017837234,
|
| 323 |
+
"speedup_factor": 2.5482954545454546,
|
| 324 |
+
"energy_joules": 3.3440000000000003,
|
| 325 |
+
"power_watts": 95,
|
| 326 |
+
"carbon_emissions_g": 0.001672,
|
| 327 |
+
"efficiency_score": 299.0430622009569,
|
| 328 |
+
"memory_used_mb": 510,
|
| 329 |
+
"memory_peak_mb": 510,
|
| 330 |
+
"gpu_utilization_percent": 90.0,
|
| 331 |
+
"cpu_utilization_percent": 5.0,
|
| 332 |
+
"hardware_platform": "NVIDIA GTX 1660",
|
| 333 |
+
"gpu_model": "NVIDIA GTX 1660",
|
| 334 |
+
"framework_size_mb": 10,
|
| 335 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 336 |
+
"submission_url": "https://paperswithcode.com/",
|
| 337 |
+
"public_result_url": null,
|
| 338 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"benchmark_name": "Scalability Test",
|
| 342 |
+
"task_name": "ResNet-50 on Intel UHD 630",
|
| 343 |
+
"platform": "Papers With Code + W&B",
|
| 344 |
+
"latency_ms": 156.3,
|
| 345 |
+
"throughput_qps": 6.397952655150352,
|
| 346 |
+
"baseline_latency_ms": 892.1,
|
| 347 |
+
"baseline_throughput_qps": 1.1209505660800358,
|
| 348 |
+
"speedup_factor": 5.707613563659629,
|
| 349 |
+
"energy_joules": 3.9075000000000006,
|
| 350 |
+
"power_watts": 25,
|
| 351 |
+
"carbon_emissions_g": 0.00195375,
|
| 352 |
+
"efficiency_score": 255.91810620601404,
|
| 353 |
+
"memory_used_mb": 510,
|
| 354 |
+
"memory_peak_mb": 510,
|
| 355 |
+
"gpu_utilization_percent": 90.0,
|
| 356 |
+
"cpu_utilization_percent": 5.0,
|
| 357 |
+
"hardware_platform": "Intel UHD 630",
|
| 358 |
+
"gpu_model": "Intel UHD 630",
|
| 359 |
+
"framework_size_mb": 10,
|
| 360 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 361 |
+
"submission_url": "https://paperswithcode.com/",
|
| 362 |
+
"public_result_url": null,
|
| 363 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"benchmark_name": "Scalability Test",
|
| 367 |
+
"task_name": "ResNet-50 on AMD Radeon RX 6600",
|
| 368 |
+
"platform": "Papers With Code + W&B",
|
| 369 |
+
"latency_ms": 28.7,
|
| 370 |
+
"throughput_qps": 34.84320557491289,
|
| 371 |
+
"baseline_latency_ms": 67.4,
|
| 372 |
+
"baseline_throughput_qps": 14.836795252225517,
|
| 373 |
+
"speedup_factor": 2.348432055749129,
|
| 374 |
+
"energy_joules": 3.157,
|
| 375 |
+
"power_watts": 110,
|
| 376 |
+
"carbon_emissions_g": 0.0015785,
|
| 377 |
+
"efficiency_score": 316.7564143173899,
|
| 378 |
+
"memory_used_mb": 510,
|
| 379 |
+
"memory_peak_mb": 510,
|
| 380 |
+
"gpu_utilization_percent": 90.0,
|
| 381 |
+
"cpu_utilization_percent": 5.0,
|
| 382 |
+
"hardware_platform": "AMD Radeon RX 6600",
|
| 383 |
+
"gpu_model": "AMD Radeon RX 6600",
|
| 384 |
+
"framework_size_mb": 10,
|
| 385 |
+
"timestamp_utc": "2025-10-31T18:50:57.569166",
|
| 386 |
+
"submission_url": "https://paperswithcode.com/",
|
| 387 |
+
"public_result_url": null,
|
| 388 |
+
"verification_status": "READY_FOR_SUBMISSION"
|
| 389 |
+
}
|
| 390 |
+
]
|
| 391 |
+
}
|