Spaces:
Sleeping
Sleeping
File size: 11,061 Bytes
df31088 3d910e2 df31088 3d910e2 df31088 3d910e2 df31088 3d910e2 df31088 3d910e2 df31088 3d910e2 df31088 97cdc7c df31088 3d910e2 df31088 3d910e2 df31088 3d910e2 df31088 3d910e2 df31088 3d910e2 df31088 3d910e2 df31088 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import json
import unicodedata
from pathlib import Path
from typing import Dict, List, Optional
from openai import OpenAI
import httpx
class NoProxyHTTPClient(httpx.Client):
def __init__(self, *args, **kwargs):
kwargs.pop("proxies", None)
super().__init__(*args, **kwargs)
class DocumentProcessor:
"""Processes PDF documents using LLM to extract clean text and generate summaries"""
def __init__(self, api_key: Optional[str] = None, model: str = "gpt-5"):
api_key = api_key or os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OpenAI API key is required")
os.environ.setdefault("OPENAI_API_KEY", api_key)
http_client = NoProxyHTTPClient(timeout=900.0)
self.client = OpenAI(http_client=http_client)
self.model = model
@staticmethod
def _normalize_filename(filename: str) -> str:
"""
Normalize filename for comparison (handle Unicode encoding variations).
Args:
filename: Original filename
Returns: Normalized filename (NFC form, lowercased, stripped)
"""
if not filename:
return ""
# Normalize to NFC (composed form) to handle encoding variations
normalized = unicodedata.normalize("NFC", filename)
# Lowercase and strip for case-insensitive comparison
return normalized.lower().strip()
def process_pdf_with_llm(self, pdf_path: str) -> Dict[str, str]:
"""
Process PDF by uploading it to OpenAI and requesting cleaned text plus a summary.
Args:
pdf_path: Path to PDF file
Returns: {"filename": str, "text": str, "summary": str}
"""
filename = Path(pdf_path).name
print(f"Processing {filename} with LLM via file upload...")
uploaded_file = None
try:
# Upload file
with open(pdf_path, "rb") as pdf_file:
uploaded_file = self.client.files.create(
file=pdf_file,
purpose="user_data"
)
prompt =("""
You are processing a legal PDF document (in Arabic) that has been uploaded as a file.
Your task has TWO parts:
1) TEXT EXTRACTION & CLEANING
2) GLOBAL SUMMARY IN ARABIC
========================
1) TEXT EXTRACTION & CLEANING
========================
Extract ONLY the **main body text** of the entire document, in order, exactly as it appears logically in the statute, while cleaning away non-content noise.
INCLUDE:
- All legal text and provisions
- Article numbers and titles
- Section / chapter / part / الباب / الفصل headings
- Numbered clauses, subclauses, bullet points
- Any explanatory legal text that is part of the law itself
EXCLUDE (REMOVE COMPLETELY):
- Headers on each page (e.g., publication dates, التصنيف, نوع التشريع, حالة التشريع, etc.)
- Footers on each page
- Page numbers
- Any repeated boilerplate that appears identically on each page
- Scanning artifacts, junk characters, or layout noise
- Empty or whitespace-only lines that are not meaningful
IMPORTANT CLEANING RULES:
- Preserve the original language (Arabic). Do NOT translate the law.
- Preserve the logical order of the articles and sections as in the original law.
- Do NOT paraphrase, shorten, summarize, or reword the legal text. Copy the body text as-is (except for removing headers/footers/page numbers and cleaning artifacts).
- If the same header/footer text appears on many pages, remove all occurrences.
- If you are unsure whether a short line is a page number or header/footer (e.g. just a digit or date in the margin), treat it as NON-content and remove it.
- Keep reasonable line breaks and blank lines between titles, articles, and sections so the text is readable and structured, but do not insert additional commentary.
- Do NOT invent or hallucinate any missing articles or text. Only use what is actually present in the PDF content.
The final "text" field should contain the **full cleaned main body** of the law as ONE string, with newline characters where appropriate.
========================
2) GLOBAL SUMMARY (IN ARABIC)
========================
After extracting the cleaned body text, generate a **concise summary in Arabic** that:
- Covers جميع الأبواب والفصول والمواد بشكل موجز
- يوضح موضوع النظام، نطاق تطبيقه، وأهم الأحكام (مثل: الزواج، الحقوق والواجبات، النفقة، النسب، الفرقة، العدة، الحضانة، الوصاية، الولاية، الوصية، المفقود، إلخ)
- يكون بصياغة عربية فصحى واضحة ومباشرة
- يكون في بضع فقرات قصيرة أو قائمة نقاط موجزة (بدون إطالة مفرطة)
لا تُدخل في الملخص أي تحليلات فقهية أو آراء، فقط وصف منظم لأهم الأحكام.
REQUIREMENTS:
- Do NOT wrap the JSON in Markdown.
- Do NOT add any extra keys or metadata.
- Do NOT add explanations before or after the JSON.
- Ensure the JSON is valid and parseable (proper quotes, commas, and escaping).
========================
OUTPUT FORMAT (STRICT)
========================
Return ONLY a single JSON object, with EXACTLY these two fields:
{
"text": "<the full cleaned main body text of the document as one string>",
"summary": "<the concise Arabic summary of the entire document>"
} """)
# Use SDK responses API
response = self.client.responses.create(
model=self.model,
input=[
{
"role": "user",
"content": [
{
"type": "input_file",
"file_id": uploaded_file.id,
},
{
"type": "input_text",
"text": prompt,
},
],
}
],
)
# Extract output_text from response
response_text = response.output_text
if not response_text:
raise ValueError("No text returned from OpenAI response.")
result = json.loads(response_text)
combined_text = result.get("text", "")
final_summary = result.get("summary", "")
except Exception as e:
print(f"Error processing {filename} via OpenAI: {e}")
raise
finally:
if uploaded_file:
try:
self.client.files.delete(uploaded_file.id)
except Exception as cleanup_error:
print(f"Warning: failed to delete uploaded file for {filename}: {cleanup_error}")
return {
"filename": filename,
"text": combined_text,
"summary": final_summary
}
def process_all_pdfs(self, documents_folder: str, skip_existing: bool = True) -> List[Dict[str, str]]:
"""
Process all PDF files in a folder, skipping already processed documents.
Args:
documents_folder: Path to folder containing PDF files
skip_existing: If True, skip PDFs that are already in processed_documents.json
Returns: List of newly processed documents
"""
folder = Path(documents_folder)
if not folder.exists():
raise ValueError(f"Folder {documents_folder} does not exist")
# Load existing processed documents
existing_docs = []
existing_filenames = set() # Original filenames for reference
existing_filenames_normalized = set() # Normalized filenames for comparison
if skip_existing:
existing_docs = self.load_from_json()
for doc in existing_docs:
original_filename = doc.get("filename")
if original_filename:
original_filename = original_filename.strip()
normalized = self._normalize_filename(original_filename)
existing_filenames.add(original_filename)
existing_filenames_normalized.add(normalized)
if existing_filenames:
print(f"Found {len(existing_filenames)} already processed documents")
pdf_files = list(folder.glob("*.pdf"))
new_processed_docs = []
skipped_count = 0
for pdf_file in pdf_files:
filename = pdf_file.name
filename_normalized = self._normalize_filename(filename)
# Debug: Print comparison attempt
# Skip if already processed (using normalized comparison)
if skip_existing and filename_normalized in existing_filenames_normalized:
print(f"⊘ Skipped (already processed): {filename}")
skipped_count += 1
continue
# Also check original filename for backward compatibility
if skip_existing and filename in existing_filenames:
print(f"⊘ Skipped (already processed, exact match): {filename}")
skipped_count += 1
continue
# Process new document
try:
result = self.process_pdf_with_llm(str(pdf_file))
new_processed_docs.append(result)
print(f"✓ Processed: {result['filename']}")
except Exception as e:
print(f"✗ Failed to process {pdf_file.name}: {e}")
# Merge with existing documents and save
if new_processed_docs:
all_docs = existing_docs + new_processed_docs
self.save_to_json(all_docs)
print(f"Processed {len(new_processed_docs)} new documents, skipped {skipped_count} existing")
elif skipped_count > 0:
print(f"All documents already processed. Skipped {skipped_count} documents.")
return new_processed_docs
def save_to_json(self, processed_docs: List[Dict[str, str]], json_path: Optional[str] = None, append: bool = False):
"""
Save processed documents to JSON file.
Args:
processed_docs: List of documents to save
json_path: Optional path to JSON file
append: If True, append to existing file (avoiding duplicates). If False, overwrite.
"""
if json_path is None:
project_root = Path(__file__).resolve().parents[1]
json_path = str(project_root / "processed_documents.json")
json_path = Path(json_path)
if append and json_path.exists():
# Load existing and merge, avoiding duplicates
existing_docs = self.load_from_json(json_path)
existing_filenames = {doc.get("filename") for doc in existing_docs if doc.get("filename")}
existing_filenames_normalized = {self._normalize_filename(fn) for fn in existing_filenames}
# Add only new documents (using normalized comparison)
for doc in processed_docs:
doc_filename = doc.get("filename", "")
doc_filename_normalized = self._normalize_filename(doc_filename)
# Check both normalized and original for backward compatibility
if doc_filename not in existing_filenames and doc_filename_normalized not in existing_filenames_normalized:
existing_docs.append(doc)
processed_docs = existing_docs
with open(json_path, "w", encoding="utf-8") as f:
json.dump(processed_docs, f, ensure_ascii=False, indent=2)
print(f"Saved {len(processed_docs)} documents to {json_path}")
def load_from_json(self, json_path: Optional[str] = None) -> List[Dict[str, str]]:
"""Load processed documents from JSON file"""
if json_path is None:
project_root = Path(__file__).resolve().parents[1]
json_path = str(project_root / "processed_documents.json")
json_path = Path(json_path)
if not json_path.exists():
return []
with open(json_path, "r", encoding="utf-8") as f:
return json.load(f)
def get_text_by_filename(self, filename: str, json_path: Optional[str] = None) -> Optional[str]:
"""Get full text for a document by filename"""
docs = self.load_from_json(json_path)
for doc in docs:
if doc.get("filename") == filename:
return doc.get("text", "")
return None
|