AldawsariNLP's picture
Remove chunks from API response and frontend display, and updating most of the files for final
3d910e2
import os
import time
import random
from typing import List, Optional
from pathlib import Path
from dotenv import load_dotenv
import httpx
from openai import OpenAI
try:
from huggingface_hub import InferenceClient
except ImportError:
InferenceClient = None
def _chunk_list(items: List[str], chunk_size: int) -> List[List[str]]:
return [items[i:i + chunk_size] for i in range(0, len(items), chunk_size)]
class NoProxyHTTPClient(httpx.Client):
def __init__(self, *args, **kwargs):
# Ensure any 'proxies' key is ignored to prevent incompat issues
kwargs.pop("proxies", None)
super().__init__(*args, **kwargs)
class OpenAIEmbeddingsWrapper:
"""
Minimal embeddings wrapper compatible with LangChain's embeddings interface.
Uses OpenAI Embeddings API via official SDK (client.embeddings.create) with batching and retries.
Forces a custom httpx.Client to avoid unexpected 'proxies' kw errors.
"""
def __init__(self, model: str = "text-embedding-ada-002", api_key: str | None = None, timeout: float = 30.0):
# Load .env from project root (one level up from backend/)
project_root = Path(__file__).resolve().parents[1]
load_dotenv(project_root / ".env")
self.model = model
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError("OPENAI_API_KEY is required for embeddings")
# Timeout/backoff config
self.timeout = timeout
self.batch_size = int(os.getenv("OPENAI_EMBED_BATCH_SIZE", "64"))
self.max_retries = int(os.getenv("OPENAI_EMBED_MAX_RETRIES", "6"))
self.initial_backoff = float(os.getenv("OPENAI_EMBED_INITIAL_BACKOFF", "1.0"))
self.backoff_multiplier = float(os.getenv("OPENAI_EMBED_BACKOFF_MULTIPLIER", "2.0"))
# Initialize OpenAI SDK client with custom http client; rely on env for API key/base URL
os.environ.setdefault("OPENAI_API_KEY", self.api_key)
http_client = NoProxyHTTPClient(timeout=self.timeout)
self.client = OpenAI(http_client=http_client)
def _embed_once(self, inputs: List[str]) -> List[List[float]]:
resp = self.client.embeddings.create(
model=self.model,
input=inputs,
encoding_format="float",
)
return [item.embedding for item in resp.data]
def _embed_with_retries(self, inputs: List[str]) -> List[List[float]]:
attempt = 0
backoff = self.initial_backoff
while True:
try:
return self._embed_once(inputs)
except Exception as err:
status = None
try:
status = getattr(getattr(err, "response", None), "status_code", None)
except Exception:
status = None
if (status in (429, 500, 502, 503, 504) or status is None) and attempt < self.max_retries:
retry_after = 0.0
try:
retry_after = float(getattr(getattr(err, "response", None), "headers", {}).get("Retry-After", 0))
except Exception:
retry_after = 0.0
jitter = random.uniform(0, 0.5)
sleep_s = max(retry_after, backoff) + jitter
time.sleep(sleep_s)
attempt += 1
backoff *= self.backoff_multiplier
continue
raise
def _embed(self, inputs: List[str]) -> List[List[float]]:
all_embeddings: List[List[float]] = []
for batch in _chunk_list(inputs, self.batch_size):
embeds = self._embed_with_retries(batch)
all_embeddings.extend(embeds)
time.sleep(float(os.getenv("OPENAI_EMBED_INTER_BATCH_DELAY", "0.2")))
return all_embeddings
def embed_query(self, text: str) -> List[float]:
return self._embed([text])[0]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
return self._embed(texts)
def __call__(self, text: str) -> List[float]:
"""
Make the embeddings wrapper callable for compatibility with FAISS.
When FAISS calls the embeddings object directly, this delegates to embed_query.
"""
return self.embed_query(text)
class HuggingFaceEmbeddingsWrapper:
"""
Embeddings wrapper compatible with LangChain's embeddings interface.
Uses HuggingFace InferenceClient with Nebius provider for embeddings.
Implements same interface as OpenAIEmbeddingsWrapper for drop-in replacement.
"""
def __init__(self, model: str = "Qwen/Qwen3-Embedding-8B", api_key: str | None = None, timeout: float = 60.0):
if InferenceClient is None:
raise ImportError("huggingface_hub is required for HuggingFace embeddings. Install it with: pip install huggingface_hub")
# Load .env from project root (one level up from backend/)
project_root = Path(__file__).resolve().parents[1]
load_dotenv(project_root / ".env")
self.model = model or os.getenv("HF_EMBEDDING_MODEL", "Qwen/Qwen3-Embedding-8B")
self.api_key = api_key or os.getenv("HF_TOKEN")
if not self.api_key:
raise ValueError("HF_TOKEN is required for HuggingFace embeddings. Set HF_TOKEN environment variable.")
# Timeout/backoff config
self.timeout = timeout
self.batch_size = int(os.getenv("HF_EMBED_BATCH_SIZE", "32")) # Smaller batch size for HF
self.max_retries = int(os.getenv("HF_EMBED_MAX_RETRIES", "6"))
self.initial_backoff = float(os.getenv("HF_EMBED_INITIAL_BACKOFF", "1.0"))
self.backoff_multiplier = float(os.getenv("HF_EMBED_BACKOFF_MULTIPLIER", "2.0"))
# Initialize HuggingFace InferenceClient with Nebius provider
self.client = InferenceClient(
provider="nebius",
api_key=self.api_key
)
print(f"[HF Embeddings] Initialized with model: {self.model}, provider: nebius")
def _embed_once(self, inputs: List[str]) -> List[List[float]]:
"""Call HuggingFace feature_extraction API for a batch of texts"""
import numpy as np
# HuggingFace feature_extraction can handle single or batch inputs
if len(inputs) == 1:
# Single text
result = self.client.feature_extraction(inputs[0], model=self.model)
# Result is numpy.ndarray - convert to list
if isinstance(result, np.ndarray):
if result.ndim == 2:
# 2D array - extract first row
result = result[0].tolist()
else:
# 1D array - convert directly
result = result.tolist()
# Result is a list of floats (embedding vector)
return [result]
else:
# Batch processing - HF may support batch, but we'll process one by one for reliability
embeddings = []
for text in inputs:
result = self.client.feature_extraction(text, model=self.model)
# Convert numpy array to list if needed
if isinstance(result, np.ndarray):
if result.ndim == 2:
result = result[0].tolist() # Extract first row if 2D
else:
result = result.tolist()
embeddings.append(result)
return embeddings
def _embed_with_retries(self, inputs: List[str]) -> List[List[float]]:
"""Embed with retry logic similar to OpenAI wrapper"""
attempt = 0
backoff = self.initial_backoff
while True:
try:
return self._embed_once(inputs)
except Exception as err:
status = None
try:
# Try to extract status code from error if available
status = getattr(getattr(err, "response", None), "status_code", None)
except Exception:
status = None
if (status in (429, 500, 502, 503, 504) or status is None) and attempt < self.max_retries:
retry_after = 0.0
try:
retry_after = float(getattr(getattr(err, "response", None), "headers", {}).get("Retry-After", 0))
except Exception:
retry_after = 0.0
jitter = random.uniform(0, 0.5)
sleep_s = max(retry_after, backoff) + jitter
time.sleep(sleep_s)
attempt += 1
backoff *= self.backoff_multiplier
continue
raise
def _embed(self, inputs: List[str]) -> List[List[float]]:
"""Process embeddings in batches with delays between batches"""
all_embeddings: List[List[float]] = []
for batch in _chunk_list(inputs, self.batch_size):
embeds = self._embed_with_retries(batch)
all_embeddings.extend(embeds)
# Small delay between batches to avoid rate limiting
time.sleep(float(os.getenv("HF_EMBED_INTER_BATCH_DELAY", "0.2")))
return all_embeddings
def embed_query(self, text: str) -> List[float]:
"""Embed a single query text"""
return self._embed([text])[0]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed multiple documents"""
return self._embed(texts)
def __call__(self, text: str) -> List[float]:
"""
Make the embeddings wrapper callable for compatibility with FAISS.
When FAISS calls the embeddings object directly, this delegates to embed_query.
"""
return self.embed_query(text)
def get_embeddings_wrapper(
model: Optional[str] = None,
api_key: Optional[str] = None,
timeout: float = 30.0
):
"""
Factory function to get the appropriate embeddings wrapper based on configuration.
Args:
model: Model name (provider-specific)
api_key: API key (provider-specific)
timeout: Timeout in seconds
Returns:
Either OpenAIEmbeddingsWrapper or HuggingFaceEmbeddingsWrapper instance
Environment Variables:
EMBEDDINGS_PROVIDER: "openai" (default), "huggingface", "hf", or "nebius"
HF_TOKEN: Required if using HuggingFace provider
HF_EMBEDDING_MODEL: Optional model override for HuggingFace (default: "Qwen/Qwen3-Embedding-8B")
"""
# Load .env from project root
project_root = Path(__file__).resolve().parents[1]
load_dotenv(project_root / ".env")
provider = os.getenv("EMBEDDINGS_PROVIDER", "hf").lower() #openai
if provider in ["huggingface", "hf", "nebius"]:
print(f"[Embeddings Factory] Using HuggingFace/Nebius provider")
hf_model = model or os.getenv("HF_EMBEDDING_MODEL", "Qwen/Qwen3-Embedding-8B")
return HuggingFaceEmbeddingsWrapper(model=hf_model, api_key=api_key, timeout=timeout)
else:
print(f"[Embeddings Factory] Using OpenAI provider (default)")
openai_model = model or os.getenv("OPENAI_EMBEDDING_MODEL", "text-embedding-ada-002")
return OpenAIEmbeddingsWrapper(model=openai_model, api_key=api_key, timeout=timeout)
#شرح نظام الأحوال الشخصية