Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,96 +4,78 @@ from PIL import Image
|
|
| 4 |
import tempfile
|
| 5 |
from gradio_client import Client, handle_file
|
| 6 |
import torch
|
| 7 |
-
from transformers import VitsModel, AutoTokenizer
|
| 8 |
import scipy.io.wavfile as wavfile
|
| 9 |
import traceback
|
| 10 |
import base64
|
| 11 |
-
import nltk
|
| 12 |
import random
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
except LookupError:
|
| 18 |
-
nltk.download('punkt', quiet=True)
|
| 19 |
-
from nltk.tokenize import sent_tokenize
|
| 20 |
|
| 21 |
-
|
| 22 |
-
device
|
| 23 |
-
print(f"Using device: {device}")
|
| 24 |
|
|
|
|
| 25 |
tts_model = None
|
| 26 |
tts_tokenizer = None
|
| 27 |
-
translator = None
|
| 28 |
-
qg_tokenizer = None
|
| 29 |
-
qg_model = None
|
| 30 |
-
qa_pipeline = None
|
| 31 |
|
| 32 |
TALKING_HEAD_SPACE = "Skywork/skyreels-a1-talking-head"
|
| 33 |
|
| 34 |
-
def
|
| 35 |
-
"""
|
| 36 |
-
global tts_model, tts_tokenizer
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
"translation",
|
| 50 |
-
model="Helsinki-NLP/opus-mt-ru-en", # Только ru->en
|
| 51 |
-
device=device
|
| 52 |
-
)
|
| 53 |
-
print("✓ Модель перевода загружена")
|
| 54 |
-
|
| 55 |
-
return True
|
| 56 |
-
except Exception as e:
|
| 57 |
-
print(f"Ошибка загрузки базовых моделей: {str(e)}")
|
| 58 |
-
traceback.print_exc()
|
| 59 |
-
return False
|
| 60 |
|
| 61 |
-
def
|
| 62 |
-
"""
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
print("Загрузка QA модели...")
|
| 74 |
-
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2", device=device)
|
| 75 |
-
print("✓ QA модель загружена")
|
| 76 |
-
|
| 77 |
-
return True
|
| 78 |
-
except Exception as e:
|
| 79 |
-
print(f"Ошибка загрузки QA моделей: {str(e)}")
|
| 80 |
-
traceback.print_exc()
|
| 81 |
-
return False
|
| 82 |
-
|
| 83 |
-
def translate_ru_to_kk(text):
|
| 84 |
-
"""Упрощенный перевод через английский"""
|
| 85 |
-
try:
|
| 86 |
-
# ru -> en
|
| 87 |
-
en_result = translator(text, max_length=512)[0]['translation_text']
|
| 88 |
-
|
| 89 |
-
# Простая транслитерация для казахского (заглушка)
|
| 90 |
-
# В реальности нужна модель en->kk, но для демо используем транслит
|
| 91 |
-
kk_text = en_result # Временно оставляем на английском
|
| 92 |
-
|
| 93 |
-
return kk_text
|
| 94 |
-
except Exception as e:
|
| 95 |
-
print(f"Ошибка перевода: {e}")
|
| 96 |
-
return text # Возвращаем исходный текст
|
| 97 |
|
| 98 |
def inference(image: Image.Image, text: str):
|
| 99 |
error_msg = ""
|
|
@@ -102,37 +84,45 @@ def inference(image: Image.Image, text: str):
|
|
| 102 |
img_path = None
|
| 103 |
|
| 104 |
try:
|
| 105 |
-
# Загрузка
|
| 106 |
-
if not
|
| 107 |
-
raise RuntimeError("Не удалось загрузить
|
| 108 |
|
| 109 |
# Валидация
|
| 110 |
if image is None:
|
| 111 |
raise ValueError("Загрузите изображение лектора!")
|
| 112 |
|
| 113 |
if not text or not text.strip():
|
| 114 |
-
raise ValueError("Введите текст
|
| 115 |
|
| 116 |
if len(text) > 500:
|
| 117 |
-
raise ValueError("Текст слишком длинный!
|
| 118 |
|
| 119 |
-
print(f"Входной
|
| 120 |
|
| 121 |
-
#
|
| 122 |
-
translated_text =
|
| 123 |
print(f"Переведенный текст: '{translated_text[:50]}...'")
|
| 124 |
|
| 125 |
-
# Генерация аудио
|
| 126 |
-
|
| 127 |
-
inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device)
|
| 128 |
-
|
| 129 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
output = tts_model(**inputs)
|
| 131 |
waveform = output.waveform.squeeze().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
if waveform.size == 0:
|
| 134 |
raise ValueError("TTS сгенерировал пустое аудио!")
|
| 135 |
|
|
|
|
| 136 |
audio = (waveform * 32767).astype("int16")
|
| 137 |
sampling_rate = tts_model.config.sampling_rate
|
| 138 |
|
|
@@ -140,26 +130,36 @@ def inference(image: Image.Image, text: str):
|
|
| 140 |
wavfile.write(audio_file.name, sampling_rate, audio)
|
| 141 |
audio_path = audio_file.name
|
| 142 |
|
| 143 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
# Сохранение изображения
|
| 146 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as img_file:
|
| 147 |
-
|
| 148 |
-
image = image.convert('RGB')
|
| 149 |
-
image.save(img_file.name, format='PNG')
|
| 150 |
img_path = img_file.name
|
| 151 |
|
| 152 |
-
print(f"
|
| 153 |
|
| 154 |
-
# Вызов
|
| 155 |
print(f"Подключение к {TALKING_HEAD_SPACE}...")
|
| 156 |
-
client = Client(TALKING_HEAD_SPACE)
|
| 157 |
|
| 158 |
result = client.predict(
|
| 159 |
image_path=handle_file(img_path),
|
| 160 |
audio_path=handle_file(audio_path),
|
| 161 |
-
guidance_scale=
|
| 162 |
-
steps=
|
| 163 |
api_name="/process_image_audio"
|
| 164 |
)
|
| 165 |
|
|
@@ -180,15 +180,16 @@ def inference(image: Image.Image, text: str):
|
|
| 180 |
if not video_path or not os.path.exists(video_path):
|
| 181 |
raise ValueError("Видео не сгенерировано!")
|
| 182 |
|
| 183 |
-
print(f"
|
| 184 |
error_msg = "✅ Бейне сәтті жасалды!"
|
| 185 |
|
| 186 |
except Exception as e:
|
| 187 |
-
error_msg = f"❌
|
| 188 |
print(f"ОШИБКА: {error_msg}")
|
| 189 |
traceback.print_exc()
|
| 190 |
|
| 191 |
finally:
|
|
|
|
| 192 |
for path in [audio_path, img_path]:
|
| 193 |
if path and os.path.exists(path):
|
| 194 |
try:
|
|
@@ -199,204 +200,185 @@ def inference(image: Image.Image, text: str):
|
|
| 199 |
return video_path, error_msg
|
| 200 |
|
| 201 |
def generate_interactive_lesson(text, video_path):
|
|
|
|
| 202 |
try:
|
| 203 |
-
# Загрузка QA моделей
|
| 204 |
-
if not load_qa_models():
|
| 205 |
-
return "<p style='color: red;'>❌ Не удалось загрузить модели для генерации вопросов</p>"
|
| 206 |
-
|
| 207 |
if not video_path or not os.path.exists(video_path):
|
| 208 |
-
return "<p style='color: red;'>❌
|
| 209 |
|
| 210 |
-
#
|
| 211 |
-
|
| 212 |
-
print(f"English text: {english_text[:100]}...")
|
| 213 |
-
|
| 214 |
-
# Генерация вопросов
|
| 215 |
-
sentences = sent_tokenize(english_text)[:3]
|
| 216 |
questions = []
|
| 217 |
|
| 218 |
for i, sent in enumerate(sentences):
|
|
|
|
| 219 |
if len(sent) < 10:
|
| 220 |
continue
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
input_ids = qg_tokenizer.encode(qg_input, return_tensors="pt", max_length=512, truncation=True).to(device)
|
| 226 |
-
|
| 227 |
-
with torch.no_grad():
|
| 228 |
-
outputs = qg_model.generate(input_ids, max_length=64, num_beams=4)
|
| 229 |
-
|
| 230 |
-
question_en = qg_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 231 |
-
|
| 232 |
-
if not question_en or len(question_en) < 5:
|
| 233 |
-
question_en = f"What is mentioned about {sent.split()[0]}?"
|
| 234 |
-
|
| 235 |
-
print(f"Q{i+1}: {question_en}")
|
| 236 |
-
|
| 237 |
-
# Извлечение ответа
|
| 238 |
-
try:
|
| 239 |
-
qa_result = qa_pipeline(question=question_en, context=english_text)
|
| 240 |
-
correct_answer_en = qa_result['answer']
|
| 241 |
-
except:
|
| 242 |
-
correct_answer_en = sent.split()[0:5]
|
| 243 |
-
correct_answer_en = " ".join(correct_answer_en)
|
| 244 |
-
|
| 245 |
-
# Неправильный ответ
|
| 246 |
-
wrong_options = ["Not mentioned", "Unknown", "Incorrect answer"]
|
| 247 |
-
wrong_answer_en = random.choice(wrong_options)
|
| 248 |
-
|
| 249 |
-
questions.append({
|
| 250 |
-
"question": question_en,
|
| 251 |
-
"correct": correct_answer_en,
|
| 252 |
-
"wrong": wrong_answer_en
|
| 253 |
-
})
|
| 254 |
-
|
| 255 |
-
except Exception as e:
|
| 256 |
-
print(f"Ошибка генерации вопроса {i+1}: {e}")
|
| 257 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
if not questions:
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
with open(video_path, 'rb') as f:
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
-
# HTML
|
| 267 |
html = f"""<!DOCTYPE html>
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
<p>{text.replace(chr(10), '<br>')}</p>
|
| 293 |
-
</div>
|
| 294 |
-
<h2 style="color: #2c3e50; text-align: center;">Test Your Knowledge:</h2>
|
| 295 |
-
"""
|
| 296 |
|
| 297 |
for i, q in enumerate(questions):
|
| 298 |
-
|
| 299 |
html += f"""
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
|
| 313 |
html += """
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
}
|
| 328 |
-
} else {
|
| 329 |
-
feedback.innerHTML = '⚠️ Please select an answer!';
|
| 330 |
-
feedback.style.background = '#fff3cd';
|
| 331 |
-
feedback.style.color = '#856404';
|
| 332 |
-
}
|
| 333 |
-
}
|
| 334 |
-
</script>
|
| 335 |
-
</body>
|
| 336 |
-
</html>
|
| 337 |
-
"""
|
| 338 |
-
|
| 339 |
-
# Экранирование
|
| 340 |
-
escaped_html = html.replace('\\', '\\\\').replace('`', '\\`').replace('${', '\\${')
|
| 341 |
|
| 342 |
return f"""
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
w.document.write(`{escaped_html}`);
|
| 353 |
-
w.document.close();
|
| 354 |
-
}}
|
| 355 |
-
</script>
|
| 356 |
-
"""
|
| 357 |
|
| 358 |
except Exception as e:
|
| 359 |
traceback.print_exc()
|
| 360 |
-
return f"<p style='color: red;'>❌
|
| 361 |
|
| 362 |
# Интерфейс
|
| 363 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
gr.Markdown("""
|
| 365 |
-
# 🎓
|
| 366 |
|
| 367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
|
| 369 |
-
|
| 370 |
-
- 📸 Photo: Clear frontal face photo
|
| 371 |
-
- 📝 Text: In Russian, max 500 characters
|
| 372 |
""")
|
| 373 |
|
| 374 |
with gr.Row():
|
| 375 |
-
with gr.Column():
|
| 376 |
-
image_input = gr.Image(type="pil", label="📸
|
| 377 |
text_input = gr.Textbox(
|
| 378 |
lines=6,
|
| 379 |
-
placeholder="
|
| 380 |
-
label="📝
|
| 381 |
)
|
| 382 |
-
|
| 383 |
|
| 384 |
-
with gr.Column():
|
| 385 |
-
video_output = gr.Video(label="🎬
|
| 386 |
-
status = gr.Textbox(label="ℹ️
|
| 387 |
|
| 388 |
-
interactive_btn = gr.Button("📚
|
| 389 |
lesson_output = gr.HTML(visible=False)
|
| 390 |
|
| 391 |
-
def
|
| 392 |
return gr.update(visible=bool(video and "✅" in status_msg))
|
| 393 |
|
| 394 |
-
|
| 395 |
inference,
|
| 396 |
inputs=[image_input, text_input],
|
| 397 |
outputs=[video_output, status]
|
| 398 |
).then(
|
| 399 |
-
|
| 400 |
inputs=[video_output, status],
|
| 401 |
outputs=interactive_btn
|
| 402 |
)
|
|
@@ -411,4 +393,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Video Lecturer") as iface:
|
|
| 411 |
)
|
| 412 |
|
| 413 |
if __name__ == "__main__":
|
| 414 |
-
iface.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import tempfile
|
| 5 |
from gradio_client import Client, handle_file
|
| 6 |
import torch
|
| 7 |
+
from transformers import VitsModel, AutoTokenizer
|
| 8 |
import scipy.io.wavfile as wavfile
|
| 9 |
import traceback
|
| 10 |
import base64
|
|
|
|
| 11 |
import random
|
| 12 |
|
| 13 |
+
# Принудительно CPU и минимальное использование памяти
|
| 14 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
| 15 |
+
torch.set_num_threads(2) # Ограничение потоков CPU
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
device = "cpu"
|
| 18 |
+
print(f"Using device: {device} (optimized mode)")
|
|
|
|
| 19 |
|
| 20 |
+
# Глобальные переменные
|
| 21 |
tts_model = None
|
| 22 |
tts_tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
TALKING_HEAD_SPACE = "Skywork/skyreels-a1-talking-head"
|
| 25 |
|
| 26 |
+
def load_tts_model():
|
| 27 |
+
"""Загрузка только TTS модели"""
|
| 28 |
+
global tts_model, tts_tokenizer
|
| 29 |
|
| 30 |
+
if tts_model is None:
|
| 31 |
+
print("Загрузка TTS модели (казахский)...")
|
| 32 |
+
tts_model = VitsModel.from_pretrained(
|
| 33 |
+
"facebook/mms-tts-kaz",
|
| 34 |
+
torch_dtype=torch.float32,
|
| 35 |
+
low_cpu_mem_usage=True
|
| 36 |
+
)
|
| 37 |
+
tts_model.eval() # Режим инференса
|
| 38 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kaz")
|
| 39 |
+
print("✓ TTS модель загружена")
|
| 40 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
def simple_translate_to_kazakh(russian_text):
|
| 43 |
+
"""
|
| 44 |
+
Упрощенная транслитерация/перевод без тяжелых моделей
|
| 45 |
+
Для реального использования нужна легкая модель или API
|
| 46 |
+
"""
|
| 47 |
+
# Простая замена для базовых слов (демо)
|
| 48 |
+
translations = {
|
| 49 |
+
'привет': 'сәлем',
|
| 50 |
+
'здравствуйте': 'сәлеметсіздер ме',
|
| 51 |
+
'спасибо': 'рахмет',
|
| 52 |
+
'пожалуйста': 'өтінемін',
|
| 53 |
+
'да': 'иә',
|
| 54 |
+
'нет': 'жоқ',
|
| 55 |
+
'сегодня': 'бүгін',
|
| 56 |
+
'завтра': 'ертең',
|
| 57 |
+
'математика': 'математика',
|
| 58 |
+
'физика': 'физика',
|
| 59 |
+
'урок': 'сабақ',
|
| 60 |
+
'лекция': 'дәріс',
|
| 61 |
+
'студент': 'студент',
|
| 62 |
+
'учитель': 'мұғалім',
|
| 63 |
+
'школа': 'мектеп',
|
| 64 |
+
'университет': 'университет',
|
| 65 |
+
'знание': 'білім',
|
| 66 |
+
'книга': 'кітап',
|
| 67 |
+
'вопрос': 'сұрақ',
|
| 68 |
+
'ответ': 'жауап'
|
| 69 |
+
}
|
| 70 |
|
| 71 |
+
text_lower = russian_text.lower()
|
| 72 |
+
result = russian_text
|
| 73 |
+
|
| 74 |
+
for ru, kk in translations.items():
|
| 75 |
+
result = result.replace(ru, kk)
|
| 76 |
+
result = result.replace(ru.capitalize(), kk.capitalize())
|
| 77 |
+
|
| 78 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
def inference(image: Image.Image, text: str):
|
| 81 |
error_msg = ""
|
|
|
|
| 84 |
img_path = None
|
| 85 |
|
| 86 |
try:
|
| 87 |
+
# Загрузка TTS
|
| 88 |
+
if not load_tts_model():
|
| 89 |
+
raise RuntimeError("Не удалось загрузить TTS модель")
|
| 90 |
|
| 91 |
# Валидация
|
| 92 |
if image is None:
|
| 93 |
raise ValueError("Загрузите изображение лектора!")
|
| 94 |
|
| 95 |
if not text or not text.strip():
|
| 96 |
+
raise ValueError("Введите текст лекции!")
|
| 97 |
|
| 98 |
if len(text) > 500:
|
| 99 |
+
raise ValueError("Текст слишком длинный! Максимум 500 символов.")
|
| 100 |
|
| 101 |
+
print(f"Входной текст: '{text[:50]}...'")
|
| 102 |
|
| 103 |
+
# Простой перевод на казахский
|
| 104 |
+
translated_text = simple_translate_to_kazakh(text)
|
| 105 |
print(f"Переведенный текст: '{translated_text[:50]}...'")
|
| 106 |
|
| 107 |
+
# Генерация аудио с оптимизацией памяти
|
| 108 |
+
print("Генерация аудио...")
|
|
|
|
|
|
|
| 109 |
with torch.no_grad():
|
| 110 |
+
inputs = tts_tokenizer(translated_text, return_tensors="pt", truncation=True, max_length=512)
|
| 111 |
+
|
| 112 |
+
# Освобождение памяти перед генерацией
|
| 113 |
+
if torch.cuda.is_available():
|
| 114 |
+
torch.cuda.empty_cache()
|
| 115 |
+
|
| 116 |
output = tts_model(**inputs)
|
| 117 |
waveform = output.waveform.squeeze().cpu().numpy()
|
| 118 |
+
|
| 119 |
+
# Очистка
|
| 120 |
+
del inputs, output
|
| 121 |
|
| 122 |
if waveform.size == 0:
|
| 123 |
raise ValueError("TTS сгенерировал пустое аудио!")
|
| 124 |
|
| 125 |
+
# Сохранение аудио
|
| 126 |
audio = (waveform * 32767).astype("int16")
|
| 127 |
sampling_rate = tts_model.config.sampling_rate
|
| 128 |
|
|
|
|
| 130 |
wavfile.write(audio_file.name, sampling_rate, audio)
|
| 131 |
audio_path = audio_file.name
|
| 132 |
|
| 133 |
+
print(f"✓ Аудио: {audio_path} ({len(waveform)/sampling_rate:.1f} сек)")
|
| 134 |
+
|
| 135 |
+
# Оптимизация изображения
|
| 136 |
+
print("Обработка изображения...")
|
| 137 |
+
if image.mode != 'RGB':
|
| 138 |
+
image = image.convert('RGB')
|
| 139 |
+
|
| 140 |
+
# Уменьшаем размер если слишком большое (экономия памяти)
|
| 141 |
+
max_size = 1024
|
| 142 |
+
if max(image.size) > max_size:
|
| 143 |
+
ratio = max_size / max(image.size)
|
| 144 |
+
new_size = tuple(int(dim * ratio) for dim in image.size)
|
| 145 |
+
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
| 146 |
+
print(f"Изображение уменьшено до {new_size}")
|
| 147 |
|
|
|
|
| 148 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as img_file:
|
| 149 |
+
image.save(img_file.name, format='PNG', optimize=True)
|
|
|
|
|
|
|
| 150 |
img_path = img_file.name
|
| 151 |
|
| 152 |
+
print(f"✓ Изображение: {img_path}")
|
| 153 |
|
| 154 |
+
# Вызов Talking Head API
|
| 155 |
print(f"Подключение к {TALKING_HEAD_SPACE}...")
|
| 156 |
+
client = Client(TALKING_HEAD_SPACE, verbose=False)
|
| 157 |
|
| 158 |
result = client.predict(
|
| 159 |
image_path=handle_file(img_path),
|
| 160 |
audio_path=handle_file(audio_path),
|
| 161 |
+
guidance_scale=2.5, # Снижено для скорости
|
| 162 |
+
steps=8, # Меньше шагов = быстрее
|
| 163 |
api_name="/process_image_audio"
|
| 164 |
)
|
| 165 |
|
|
|
|
| 180 |
if not video_path or not os.path.exists(video_path):
|
| 181 |
raise ValueError("Видео не сгенерировано!")
|
| 182 |
|
| 183 |
+
print(f"✓ Видео: {video_path}")
|
| 184 |
error_msg = "✅ Бейне сәтті жасалды!"
|
| 185 |
|
| 186 |
except Exception as e:
|
| 187 |
+
error_msg = f"❌ Қате: {str(e)}"
|
| 188 |
print(f"ОШИБКА: {error_msg}")
|
| 189 |
traceback.print_exc()
|
| 190 |
|
| 191 |
finally:
|
| 192 |
+
# Очистка временных файлов
|
| 193 |
for path in [audio_path, img_path]:
|
| 194 |
if path and os.path.exists(path):
|
| 195 |
try:
|
|
|
|
| 200 |
return video_path, error_msg
|
| 201 |
|
| 202 |
def generate_interactive_lesson(text, video_path):
|
| 203 |
+
"""Упрощенная версия без тяжелых моделей QA"""
|
| 204 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
if not video_path or not os.path.exists(video_path):
|
| 206 |
+
return "<p style='color: red;'>❌ Алдымен бейнені жасаңыз!</p>"
|
| 207 |
|
| 208 |
+
# Простая генерация вопросов без ML моделей
|
| 209 |
+
sentences = text.split('.')[:3] # Первые 3 предложения
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
questions = []
|
| 211 |
|
| 212 |
for i, sent in enumerate(sentences):
|
| 213 |
+
sent = sent.strip()
|
| 214 |
if len(sent) < 10:
|
| 215 |
continue
|
| 216 |
|
| 217 |
+
# Простые шаблоны вопросов
|
| 218 |
+
words = sent.split()
|
| 219 |
+
if len(words) < 3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
continue
|
| 221 |
+
|
| 222 |
+
# Генерируем вопрос на основе шаблона
|
| 223 |
+
question_templates = [
|
| 224 |
+
f"Не сказано о {words[0].lower()}?",
|
| 225 |
+
f"Что упоминается в тексте о {words[1].lower() if len(words) > 1 else 'теме'}?",
|
| 226 |
+
f"Какая информация дана о {words[2].lower() if len(words) > 2 else 'содержании'}?"
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
+
question = random.choice(question_templates)
|
| 230 |
+
|
| 231 |
+
# Правильный ответ - часть предложения
|
| 232 |
+
correct = ' '.join(words[:min(5, len(words))])
|
| 233 |
+
|
| 234 |
+
# Неправильные ответы
|
| 235 |
+
wrong_options = [
|
| 236 |
+
"Бұл туралы айтылмаған",
|
| 237 |
+
"Мәтінде жоқ",
|
| 238 |
+
"Дұрыс емес жауап"
|
| 239 |
+
]
|
| 240 |
+
wrong = random.choice(wrong_options)
|
| 241 |
+
|
| 242 |
+
questions.append({
|
| 243 |
+
"question": question,
|
| 244 |
+
"correct": correct,
|
| 245 |
+
"wrong": wrong
|
| 246 |
+
})
|
| 247 |
|
| 248 |
if not questions:
|
| 249 |
+
# Создаем хотя бы один вопрос
|
| 250 |
+
questions.append({
|
| 251 |
+
"question": "Дәрістің негізгі тақырыбы не?",
|
| 252 |
+
"correct": text.split('.')[0][:50] if text else "Білім",
|
| 253 |
+
"wrong": "Спорт туралы"
|
| 254 |
+
})
|
| 255 |
+
|
| 256 |
+
# Base64 видео (оптимизировано)
|
| 257 |
+
print("Кодирование видео в base64...")
|
| 258 |
with open(video_path, 'rb') as f:
|
| 259 |
+
video_data = f.read()
|
| 260 |
+
# Проверка размера
|
| 261 |
+
if len(video_data) > 50 * 1024 * 1024: # 50MB
|
| 262 |
+
return "<p style='color: orange;'>⚠️ Видео слишком большое для встраивания. Скачайте его отдельно.</p>"
|
| 263 |
+
video_base64 = base64.b64encode(video_data).decode('utf-8')
|
| 264 |
|
| 265 |
+
# Минимальный HTML
|
| 266 |
html = f"""<!DOCTYPE html>
|
| 267 |
+
<html>
|
| 268 |
+
<head>
|
| 269 |
+
<meta charset="UTF-8">
|
| 270 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 271 |
+
<title>Интерактивті сабақ</title>
|
| 272 |
+
<style>
|
| 273 |
+
* {{ margin: 0; padding: 0; box-sizing: border-box; }}
|
| 274 |
+
body {{ font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 15px; background: #f5f5f5; }}
|
| 275 |
+
h1 {{ color: #333; text-align: center; margin: 20px 0; font-size: 24px; }}
|
| 276 |
+
video {{ width: 100%; max-width: 600px; display: block; margin: 20px auto; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.1); }}
|
| 277 |
+
.text {{ background: white; padding: 15px; margin: 20px 0; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); }}
|
| 278 |
+
.q {{ background: white; padding: 15px; margin: 15px 0; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); }}
|
| 279 |
+
button {{ background: #4CAF50; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-top: 10px; }}
|
| 280 |
+
button:hover {{ background: #45a049; }}
|
| 281 |
+
.fb {{ margin-top: 10px; padding: 8px; border-radius: 5px; font-weight: bold; }}
|
| 282 |
+
label {{ cursor: pointer; }}
|
| 283 |
+
</style>
|
| 284 |
+
</head>
|
| 285 |
+
<body>
|
| 286 |
+
<h1>📚 Интерактивті сабақ</h1>
|
| 287 |
+
<video controls><source src="data:video/mp4;base64,{video_base64}" type="video/mp4"></video>
|
| 288 |
+
<div class="text"><strong>Дәріс мәтіні:</strong> {text[:500]}</div>
|
| 289 |
+
<h2 style="text-align:center; margin: 20px 0;">Тесттер:</h2>
|
| 290 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
for i, q in enumerate(questions):
|
| 293 |
+
ca = q['correct'].replace("'", "\\'").replace('"', '"')
|
| 294 |
html += f"""
|
| 295 |
+
<div class="q">
|
| 296 |
+
<p><strong>Сұрақ {i+1}:</strong> {q['question']}</p>
|
| 297 |
+
<div style="margin: 10px 0;">
|
| 298 |
+
<input type="radio" name="q{i}" value="c" id="c{i}">
|
| 299 |
+
<label for="c{i}">{q['correct']}</label><br>
|
| 300 |
+
<input type="radio" name="q{i}" value="w" id="w{i}">
|
| 301 |
+
<label for="w{i}">{q['wrong']}</label>
|
| 302 |
+
</div>
|
| 303 |
+
<button onclick="check({i},'{ca}')">Тексеру</button>
|
| 304 |
+
<div class="fb" id="fb{i}"></div>
|
| 305 |
+
</div>
|
| 306 |
+
"""
|
| 307 |
|
| 308 |
html += """
|
| 309 |
+
<script>
|
| 310 |
+
function check(i, c) {
|
| 311 |
+
var s = document.querySelector('input[name="q'+i+'"]:checked');
|
| 312 |
+
var f = document.getElementById('fb'+i);
|
| 313 |
+
if(!s) { f.innerHTML='⚠️ Жауап таңдаңыз!'; f.style.background='#fff3cd'; f.style.color='#856404'; return; }
|
| 314 |
+
if(s.value==='c') { f.innerHTML='✅ Дұрыс!'; f.style.background='#d4edda'; f.style.color='#155724'; }
|
| 315 |
+
else { f.innerHTML='❌ Қате. Дұрыс: '+c; f.style.background='#f8d7da'; f.style.color='#721c24'; }
|
| 316 |
+
}
|
| 317 |
+
</script>
|
| 318 |
+
</body>
|
| 319 |
+
</html>"""
|
| 320 |
+
|
| 321 |
+
escaped = html.replace('\\', '\\\\').replace('`', '\\`').replace('${', '\\${')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
return f"""
|
| 324 |
+
<div style="text-align:center; padding: 20px; background: white; border-radius: 8px;">
|
| 325 |
+
<h3 style="color: #2c3e50;">✅ Интерактивті сабақ дайын!</h3>
|
| 326 |
+
<button onclick="var w=window.open('','_blank');w.document.write(`{escaped}`);w.document.close();"
|
| 327 |
+
style="background: #27ae60; color: white; padding: 15px 30px; font-size: 16px; border: none;
|
| 328 |
+
border-radius: 8px; cursor: pointer; margin-top: 15px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
|
| 329 |
+
📖 Интерактивті сабақты ашу
|
| 330 |
+
</button>
|
| 331 |
+
</div>
|
| 332 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
except Exception as e:
|
| 335 |
traceback.print_exc()
|
| 336 |
+
return f"<p style='color: red;'>❌ Қате: {str(e)}</p>"
|
| 337 |
|
| 338 |
# Интерфейс
|
| 339 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Бейне Оқытушы", css="""
|
| 340 |
+
.gradio-container {max-width: 1200px !important;}
|
| 341 |
+
footer {display: none !important;}
|
| 342 |
+
""") as iface:
|
| 343 |
+
|
| 344 |
gr.Markdown("""
|
| 345 |
+
# 🎓 Бейне Оқытушы (CPU Оптимизацияланған)
|
| 346 |
|
| 347 |
+
**Қалай пайдалану:**
|
| 348 |
+
1. 📸 Суретіңізді жүктеңіз (бет анық көрінетін)
|
| 349 |
+
2. 📝 Дәріс мәтінін орыс тілінде енгізіңіз (500 таңбаға дейін)
|
| 350 |
+
3. 🎬 "Бейнені жасау" батырмасын басыңыз
|
| 351 |
+
4. 📚 Дайын болғаннан кейін "Интерактивті сабақ" жасай аласыз
|
| 352 |
|
| 353 |
+
⚡ **Ескерту:** CPU режимінде жұмыс істейді, генерация 1-3 минут алуы мүмкін.
|
|
|
|
|
|
|
| 354 |
""")
|
| 355 |
|
| 356 |
with gr.Row():
|
| 357 |
+
with gr.Column(scale=1):
|
| 358 |
+
image_input = gr.Image(type="pil", label="📸 Дәріскер суреті")
|
| 359 |
text_input = gr.Textbox(
|
| 360 |
lines=6,
|
| 361 |
+
placeholder="Мысалы: Сәлеметсіздер ме! Бүгін біз математика туралы сөйлесеміз...",
|
| 362 |
+
label="📝 Дәріс мәтіні (орыс тілінде)"
|
| 363 |
)
|
| 364 |
+
generate_btn = gr.Button("🎬 Бейнені жасау", variant="primary", size="lg")
|
| 365 |
|
| 366 |
+
with gr.Column(scale=1):
|
| 367 |
+
video_output = gr.Video(label="🎬 Дайын бейне")
|
| 368 |
+
status = gr.Textbox(label="ℹ️ Мәртебе", interactive=False)
|
| 369 |
|
| 370 |
+
interactive_btn = gr.Button("📚 Интерактивті сабақ жасау", visible=False, variant="secondary")
|
| 371 |
lesson_output = gr.HTML(visible=False)
|
| 372 |
|
| 373 |
+
def show_lesson_btn(video, status_msg):
|
| 374 |
return gr.update(visible=bool(video and "✅" in status_msg))
|
| 375 |
|
| 376 |
+
generate_btn.click(
|
| 377 |
inference,
|
| 378 |
inputs=[image_input, text_input],
|
| 379 |
outputs=[video_output, status]
|
| 380 |
).then(
|
| 381 |
+
show_lesson_btn,
|
| 382 |
inputs=[video_output, status],
|
| 383 |
outputs=interactive_btn
|
| 384 |
)
|
|
|
|
| 393 |
)
|
| 394 |
|
| 395 |
if __name__ == "__main__":
|
| 396 |
+
iface.launch(
|
| 397 |
+
server_name="0.0.0.0",
|
| 398 |
+
server_port=7860,
|
| 399 |
+
share=False
|
| 400 |
+
)
|