Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,41 +1,173 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
-
from
|
| 4 |
-
import subprocess
|
| 5 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
tts.save(audio_path)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
iface = gr.Interface(
|
| 28 |
-
fn=
|
| 29 |
inputs=[
|
| 30 |
-
gr.Image(label="Фото
|
| 31 |
-
gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
],
|
| 33 |
outputs=[
|
| 34 |
-
gr.
|
| 35 |
-
gr.
|
| 36 |
],
|
| 37 |
-
title=
|
| 38 |
-
description=
|
|
|
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
+
from PIL import Image
|
|
|
|
| 4 |
import tempfile
|
| 5 |
+
from gradio_client import Client, handle_file
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import VitsModel, AutoTokenizer
|
| 8 |
+
import scipy.io.wavfile as wavfile
|
| 9 |
|
| 10 |
+
# Загрузка обновленной TTS модели при старте
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
print(f"Using device: {device}")
|
| 13 |
|
| 14 |
+
try:
|
| 15 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-rus").to(device)
|
| 16 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")
|
| 17 |
+
print("TTS модель загружена успешно!")
|
| 18 |
+
except Exception as e:
|
| 19 |
+
raise RuntimeError(f"Ошибка загрузки TTS модели: {str(e)}")
|
| 20 |
|
| 21 |
+
# Пространство для talking-head
|
| 22 |
+
TALKING_HEAD_SPACE = "Skywork/skyreels-a1-talking-head"
|
|
|
|
| 23 |
|
| 24 |
+
def inference(image: Image.Image, text: str):
|
| 25 |
+
error_msg = ""
|
| 26 |
+
video_path = None
|
| 27 |
+
audio_path = None
|
| 28 |
+
img_path = None
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
# Валидация входных данных
|
| 32 |
+
if image is None:
|
| 33 |
+
raise ValueError("Загрузите изображение лектора!")
|
| 34 |
+
|
| 35 |
+
if not text or not text.strip():
|
| 36 |
+
raise ValueError("Введите текст лекции!")
|
| 37 |
+
|
| 38 |
+
if len(text) > 500:
|
| 39 |
+
raise ValueError("Текст слишком длинный! Используйте до 500 символов.")
|
| 40 |
+
|
| 41 |
+
print(f"Генерация TTS для текста: '{text[:50]}...'")
|
| 42 |
+
|
| 43 |
+
# Шаг 1: Генерация аудио через TTS
|
| 44 |
+
torch.manual_seed(42)
|
| 45 |
+
inputs = tts_tokenizer(text, return_tensors="pt").to(device)
|
| 46 |
+
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
output = tts_model(**inputs)
|
| 49 |
+
waveform = output.waveform.squeeze().cpu().numpy()
|
| 50 |
+
|
| 51 |
+
if waveform.size == 0:
|
| 52 |
+
raise ValueError("TTS сгенерировал пустое аудио! Попробуйте другой текст.")
|
| 53 |
+
|
| 54 |
+
# Конвертация в int16 для WAV
|
| 55 |
+
audio = (waveform * 32767).astype("int16")
|
| 56 |
+
sampling_rate = tts_model.config.sampling_rate
|
| 57 |
+
|
| 58 |
+
# Сохранение аудио
|
| 59 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
|
| 60 |
+
wavfile.write(audio_file.name, sampling_rate, audio)
|
| 61 |
+
audio_path = audio_file.name
|
| 62 |
+
|
| 63 |
+
print(f"TTS аудио сохранено: {audio_path} (длина: {len(waveform)/sampling_rate:.1f} сек)")
|
| 64 |
+
|
| 65 |
+
# Шаг 2: Сохранение изображения
|
| 66 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as img_file:
|
| 67 |
+
# Конвертация в RGB если нужно
|
| 68 |
+
if image.mode != 'RGB':
|
| 69 |
+
image = image.convert('RGB')
|
| 70 |
+
image.save(img_file.name, format='PNG')
|
| 71 |
+
img_path = img_file.name
|
| 72 |
+
|
| 73 |
+
print(f"Изображение сохранено: {img_path}")
|
| 74 |
+
|
| 75 |
+
# Шаг 3: Вызов talking-head API
|
| 76 |
+
print(f"Подключение к {TALKING_HEAD_SPACE}...")
|
| 77 |
+
client = Client(TALKING_HEAD_SPACE)
|
| 78 |
+
|
| 79 |
+
# Проверяем доступные API endpoints
|
| 80 |
+
print("Доступные API методы:", client.view_api())
|
| 81 |
+
|
| 82 |
+
# Вызов API с правильными параметрами
|
| 83 |
+
result = client.predict(
|
| 84 |
+
image_path=handle_file(img_path),
|
| 85 |
+
audio_path=handle_file(audio_path),
|
| 86 |
+
guidance_scale=3.0,
|
| 87 |
+
steps=10,
|
| 88 |
+
api_name="/process_image_audio"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
print(f"Результат API: {type(result)}")
|
| 92 |
+
|
| 93 |
+
# Обработка результата
|
| 94 |
+
if isinstance(result, tuple) and len(result) > 0:
|
| 95 |
+
video_data = result[0]
|
| 96 |
+
if isinstance(video_data, dict) and 'video' in video_data:
|
| 97 |
+
video_path = video_data['video']
|
| 98 |
+
elif isinstance(video_data, dict) and 'path' in video_data:
|
| 99 |
+
video_path = video_data['path']
|
| 100 |
+
elif isinstance(video_data, str):
|
| 101 |
+
video_path = video_data
|
| 102 |
+
else:
|
| 103 |
+
video_path = video_data
|
| 104 |
+
else:
|
| 105 |
+
video_path = result
|
| 106 |
+
|
| 107 |
+
print(f"Видео сгенерировано: {video_path}")
|
| 108 |
+
error_msg = "✅ Видео успешно сгенерировано!"
|
| 109 |
+
|
| 110 |
+
except Exception as e:
|
| 111 |
+
error_msg = f"❌ Ошибка: {str(e)}"
|
| 112 |
+
print(f"ОШИБКА: {error_msg}")
|
| 113 |
+
import traceback
|
| 114 |
+
traceback.print_exc()
|
| 115 |
+
|
| 116 |
+
finally:
|
| 117 |
+
# Очистка временных файлов
|
| 118 |
+
if audio_path and os.path.exists(audio_path):
|
| 119 |
+
try:
|
| 120 |
+
os.remove(audio_path)
|
| 121 |
+
print(f"Удален временный файл: {audio_path}")
|
| 122 |
+
except:
|
| 123 |
+
pass
|
| 124 |
+
|
| 125 |
+
if img_path and os.path.exists(img_path):
|
| 126 |
+
try:
|
| 127 |
+
os.remove(img_path)
|
| 128 |
+
print(f"Удален временный файл: {img_path}")
|
| 129 |
+
except:
|
| 130 |
+
pass
|
| 131 |
+
|
| 132 |
+
return video_path, error_msg
|
| 133 |
|
| 134 |
+
# Интерфейс Gradio
|
| 135 |
+
title = "Видео-лектор с TTS (Русский)"
|
| 136 |
+
description = """
|
| 137 |
+
Загрузите фото лектора и введите текст лекции.
|
| 138 |
+
Система сгенерирует видео, где лектор "произносит" ваш текст!
|
| 139 |
+
**Требования:**
|
| 140 |
+
- Фото: фронтальное изображение лица
|
| 141 |
+
- Текст: до 500 символов на русском языке
|
| 142 |
+
"""
|
| 143 |
|
| 144 |
+
examples = [
|
| 145 |
+
[
|
| 146 |
+
"example_image.png",
|
| 147 |
+
"Добрый день! Сегодня мы рассмотрим основы машинного обучения."
|
| 148 |
+
]
|
| 149 |
+
]
|
| 150 |
|
| 151 |
iface = gr.Interface(
|
| 152 |
+
fn=inference,
|
| 153 |
inputs=[
|
| 154 |
+
gr.Image(type="pil", label="📸 Фото лектора"),
|
| 155 |
+
gr.Textbox(
|
| 156 |
+
lines=5,
|
| 157 |
+
placeholder="Введите текст лекции на русском языке (до 500 символов)...",
|
| 158 |
+
label="📝 Текст лекции"
|
| 159 |
+
)
|
| 160 |
],
|
| 161 |
outputs=[
|
| 162 |
+
gr.Video(label="🎬 Готовое видео"),
|
| 163 |
+
gr.Textbox(label="ℹ️ Статус", interactive=False)
|
| 164 |
],
|
| 165 |
+
title=title,
|
| 166 |
+
description=description,
|
| 167 |
+
flagging_mode="never",
|
| 168 |
+
examples=None, # Добавьте примеры, если есть тестовые изображения
|
| 169 |
+
cache_examples=False
|
| 170 |
)
|
| 171 |
|
| 172 |
+
if __name__ == "__main__":
|
| 173 |
+
iface.launch()
|