Spaces:
Running
Running
Upload 7 files
Browse files- .gitignore +16 -0
- app.py +46 -37
- logo_araclip.png +0 -0
- requirements.txt +95 -3
- utils.py +9 -21
.gitignore
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cashed_pickles/*
|
| 2 |
+
photos/*
|
| 3 |
+
.env/*
|
| 4 |
+
*/__pycache__/*
|
| 5 |
+
.gradio/*
|
| 6 |
+
*/.ipynb_checkpoints/*
|
| 7 |
+
*/.vscode/*
|
| 8 |
+
*/.git/*
|
| 9 |
+
*/.gitignore
|
| 10 |
+
*/.gitattributes
|
| 11 |
+
*/.gitmodules
|
| 12 |
+
*/.gitkeep
|
| 13 |
+
*/.gitlab-ci.yml
|
| 14 |
+
*/.gitlab/*
|
| 15 |
+
*/.github/*
|
| 16 |
+
*/
|
app.py
CHANGED
|
@@ -12,8 +12,8 @@ with gr.Blocks() as demo_araclip:
|
|
| 12 |
|
| 13 |
gr.Markdown("## Input parameters")
|
| 14 |
|
| 15 |
-
txt = gr.Textbox(label="Text Query
|
| 16 |
-
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1)
|
| 17 |
|
| 18 |
|
| 19 |
with gr.Row():
|
|
@@ -22,26 +22,15 @@ with gr.Blocks() as demo_araclip:
|
|
| 22 |
gr.Markdown("## Retrieved Images")
|
| 23 |
|
| 24 |
gallery = gr.Gallery(
|
| 25 |
-
|
| 26 |
, columns=[5], rows=[1], object_fit="contain", height="auto")
|
| 27 |
|
| 28 |
|
| 29 |
with gr.Row():
|
| 30 |
-
lables = gr.Label(label="Text
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
with gr.Column(scale=1):
|
| 35 |
-
gr.Markdown("<div style='text-align: center; font-size: 24px; font-weight: bold;'>Data Retrieved based on Images Similarity</div>")
|
| 36 |
-
|
| 37 |
-
json_output = gr.JSON()
|
| 38 |
-
|
| 39 |
-
with gr.Column(scale=1):
|
| 40 |
-
gr.Markdown("<div style='text-align: center; font-size: 24px; font-weight: bold;'>Data Retrieved based on Text similarity</div>")
|
| 41 |
-
json_text = gr.JSON()
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
btn.click(utils.predict, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables, json_output, json_text])
|
| 45 |
|
| 46 |
|
| 47 |
gr.Examples(
|
|
@@ -49,7 +38,7 @@ with gr.Blocks() as demo_araclip:
|
|
| 49 |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
| 50 |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
| 51 |
inputs=[txt, num, dadtaset_select],
|
| 52 |
-
outputs=[gallery,lables
|
| 53 |
fn=utils.predict,
|
| 54 |
cache_examples=False,
|
| 55 |
)
|
|
@@ -64,8 +53,8 @@ with gr.Blocks() as demo_mclip:
|
|
| 64 |
|
| 65 |
gr.Markdown("## Input parameters")
|
| 66 |
|
| 67 |
-
txt = gr.Textbox(label="Text Query
|
| 68 |
-
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1)
|
| 69 |
|
| 70 |
with gr.Row():
|
| 71 |
btn = gr.Button("Retrieve images", scale=1)
|
|
@@ -79,37 +68,57 @@ with gr.Blocks() as demo_mclip:
|
|
| 79 |
|
| 80 |
lables = gr.Label()
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
with gr.Column(scale=1):
|
| 85 |
-
gr.Markdown("## Images Retrieved")
|
| 86 |
-
json_output = gr.JSON()
|
| 87 |
-
|
| 88 |
-
with gr.Column(scale=1):
|
| 89 |
-
gr.Markdown("## Text Retrieved")
|
| 90 |
-
json_text = gr.JSON()
|
| 91 |
-
|
| 92 |
-
btn.click(utils.predict_mclip, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables, json_output, json_text])
|
| 93 |
|
| 94 |
gr.Examples(
|
| 95 |
examples=[["تخطي لاعب فريق بيتسبرج بايرتس منطقة اللوحة الرئيسية في مباراة بدوري البيسبول", 5],
|
| 96 |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
| 97 |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
| 98 |
inputs=[txt, num, dadtaset_select],
|
| 99 |
-
outputs=[gallery,lables
|
| 100 |
fn=utils.predict_mclip,
|
| 101 |
cache_examples=False,
|
| 102 |
)
|
| 103 |
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
# Group the demos in a TabbedInterface
|
| 106 |
with gr.Blocks() as demo:
|
| 107 |
|
| 108 |
-
gr.
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
if __name__ == "__main__":
|
| 114 |
|
| 115 |
demo.launch()
|
|
|
|
| 12 |
|
| 13 |
gr.Markdown("## Input parameters")
|
| 14 |
|
| 15 |
+
txt = gr.Textbox(label="Text Query")
|
| 16 |
+
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1, step=1)
|
| 17 |
|
| 18 |
|
| 19 |
with gr.Row():
|
|
|
|
| 22 |
gr.Markdown("## Retrieved Images")
|
| 23 |
|
| 24 |
gallery = gr.Gallery(
|
| 25 |
+
show_label=False, elem_id="gallery"
|
| 26 |
, columns=[5], rows=[1], object_fit="contain", height="auto")
|
| 27 |
|
| 28 |
|
| 29 |
with gr.Row():
|
| 30 |
+
lables = gr.Label(label="Text-image similarity")
|
| 31 |
|
| 32 |
+
|
| 33 |
+
btn.click(utils.predict, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
gr.Examples(
|
|
|
|
| 38 |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
| 39 |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
| 40 |
inputs=[txt, num, dadtaset_select],
|
| 41 |
+
outputs=[gallery,lables],
|
| 42 |
fn=utils.predict,
|
| 43 |
cache_examples=False,
|
| 44 |
)
|
|
|
|
| 53 |
|
| 54 |
gr.Markdown("## Input parameters")
|
| 55 |
|
| 56 |
+
txt = gr.Textbox(label="Text Query")
|
| 57 |
+
num = gr.Slider(label="Number of retrieved image", value=1, minimum=1, step=1)
|
| 58 |
|
| 59 |
with gr.Row():
|
| 60 |
btn = gr.Button("Retrieve images", scale=1)
|
|
|
|
| 68 |
|
| 69 |
lables = gr.Label()
|
| 70 |
|
| 71 |
+
btn.click(utils.predict_mclip, inputs=[txt, num, dadtaset_select], outputs=[gallery,lables])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
gr.Examples(
|
| 74 |
examples=[["تخطي لاعب فريق بيتسبرج بايرتس منطقة اللوحة الرئيسية في مباراة بدوري البيسبول", 5],
|
| 75 |
["وقوف قطة بمخالبها على فأرة حاسوب على المكتب", 10],
|
| 76 |
["صحن به شوربة صينية بالخضار، وإلى جانبه بطاطس مقلية وزجاجة ماء", 7]],
|
| 77 |
inputs=[txt, num, dadtaset_select],
|
| 78 |
+
outputs=[gallery,lables],
|
| 79 |
fn=utils.predict_mclip,
|
| 80 |
cache_examples=False,
|
| 81 |
)
|
| 82 |
|
| 83 |
|
| 84 |
+
# Define custom CSS to increase the size of the tabs
|
| 85 |
+
custom_css = """
|
| 86 |
+
.gr-tabbed-interface .gr-tab {
|
| 87 |
+
font-size: 50px; /* Increase the font size */
|
| 88 |
+
padding: 10px; /* Increase the padding */
|
| 89 |
+
}
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
# Group the demos in a TabbedInterface
|
| 93 |
with gr.Blocks() as demo:
|
| 94 |
|
| 95 |
+
# gr.Image("statics/logo_araclip.png")
|
| 96 |
+
gr.Markdown("""
|
| 97 |
+
<center> <img src="/file=statics/logo_araclip.png" alt="Imgur" style="width:200px"></center>
|
| 98 |
+
""")
|
| 99 |
+
gr.Markdown("<center> <font color=red size=10>AraClip: Arabic Image Retrieval Application</font></center>")
|
| 100 |
+
|
| 101 |
+
gr.Markdown("""
|
| 102 |
+
<font size=4> To run the demo 🤗, please select the model, then the dataset you would like to search in, enter a text query, and specify the number of retrieved images.</font>
|
| 103 |
+
|
| 104 |
+
""")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
gr.TabbedInterface([demo_araclip, demo_mclip], ["Our Model", "Mclip model"], css=custom_css)
|
| 109 |
+
|
| 110 |
+
gr.Markdown(
|
| 111 |
+
"""
|
| 112 |
+
If you find this work helpful, please help us to ⭐ the repositories in <a href='https://github.com/Arabic-Clip' target='_blank'>Github Organization</a>. Thank you!
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
📝 **Citation**
|
| 116 |
+
|
| 117 |
+
To be shared soon.
|
| 118 |
+
|
| 119 |
+
📋 **License**
|
| 120 |
+
"""
|
| 121 |
+
)
|
| 122 |
if __name__ == "__main__":
|
| 123 |
|
| 124 |
demo.launch()
|
logo_araclip.png
ADDED
|
requirements.txt
CHANGED
|
@@ -1,5 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
open-clip-torch==2.23.0
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
torch==2.1.1
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==23.2.1
|
| 2 |
+
altair==5.2.0
|
| 3 |
+
annotated-types==0.6.0
|
| 4 |
+
anyio==3.7.1
|
| 5 |
+
attrs==23.1.0
|
| 6 |
+
certifi==2023.11.17
|
| 7 |
+
charset-normalizer==3.3.2
|
| 8 |
+
click==8.1.7
|
| 9 |
+
colorama==0.4.6
|
| 10 |
+
contourpy==1.1.1
|
| 11 |
+
cycler==0.12.1
|
| 12 |
+
exceptiongroup==1.2.0
|
| 13 |
+
fastapi==0.105.0
|
| 14 |
+
ffmpy==0.3.1
|
| 15 |
+
filelock==3.13.1
|
| 16 |
+
fonttools==4.46.0
|
| 17 |
+
fsspec==2023.12.2
|
| 18 |
+
ftfy==6.1.3
|
| 19 |
+
gradio==4.38.1
|
| 20 |
+
gradio-client==1.1.0
|
| 21 |
+
h11==0.14.0
|
| 22 |
+
httpcore==1.0.5
|
| 23 |
+
httpx==0.27.0
|
| 24 |
+
huggingface-hub==0.19.4
|
| 25 |
+
idna==3.6
|
| 26 |
+
importlib-resources==6.1.1
|
| 27 |
+
Jinja2==3.1.2
|
| 28 |
+
jsonschema==4.20.0
|
| 29 |
+
jsonschema-specifications==2023.11.2
|
| 30 |
+
kiwisolver==1.4.5
|
| 31 |
+
markdown-it-py==3.0.0
|
| 32 |
+
MarkupSafe==2.1.3
|
| 33 |
+
matplotlib==3.7.4
|
| 34 |
+
mdurl==0.1.2
|
| 35 |
+
mpmath==1.3.0
|
| 36 |
+
multilingual-clip==1.0.10
|
| 37 |
+
networkx==3.1
|
| 38 |
+
numpy==1.24.4
|
| 39 |
+
nvidia-cublas-cu12==12.1.3.1
|
| 40 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
| 41 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
| 42 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
| 43 |
+
nvidia-cudnn-cu12==8.9.2.26
|
| 44 |
+
nvidia-cufft-cu12==11.0.2.54
|
| 45 |
+
nvidia-curand-cu12==10.3.2.106
|
| 46 |
+
nvidia-cusolver-cu12==11.4.5.107
|
| 47 |
+
nvidia-cusparse-cu12==12.1.0.106
|
| 48 |
+
nvidia-nccl-cu12==2.18.1
|
| 49 |
+
nvidia-nvjitlink-cu12==12.3.101
|
| 50 |
+
nvidia-nvtx-cu12==12.1.105
|
| 51 |
open-clip-torch==2.23.0
|
| 52 |
+
orjson==3.9.10
|
| 53 |
+
packaging==23.2
|
| 54 |
+
pandas==2.0.3
|
| 55 |
+
Pillow==10.1.0
|
| 56 |
+
pkgutil-resolve-name==1.3.10
|
| 57 |
+
protobuf==4.25.1
|
| 58 |
+
pydantic==2.5.2
|
| 59 |
+
pydantic-core==2.14.5
|
| 60 |
+
pydub==0.25.1
|
| 61 |
+
pygments==2.17.2
|
| 62 |
+
pyparsing==3.1.1
|
| 63 |
+
python-dateutil==2.8.2
|
| 64 |
+
python-multipart==0.0.9
|
| 65 |
+
pytz==2023.3.post1
|
| 66 |
+
PyYAML==6.0.1
|
| 67 |
+
referencing==0.32.0
|
| 68 |
+
regex==2023.10.3
|
| 69 |
+
requests==2.31.0
|
| 70 |
+
rich==13.7.0
|
| 71 |
+
rpds-py==0.13.2
|
| 72 |
+
ruff==0.5.4
|
| 73 |
+
safetensors==0.4.1
|
| 74 |
+
semantic-version==2.10.0
|
| 75 |
+
sentencepiece==0.1.99
|
| 76 |
+
shellingham==1.5.4
|
| 77 |
+
six==1.16.0
|
| 78 |
+
sniffio==1.3.0
|
| 79 |
+
starlette==0.27.0
|
| 80 |
+
sympy==1.12
|
| 81 |
+
timm==0.9.12
|
| 82 |
+
tokenizers==0.15.0
|
| 83 |
+
tomlkit==0.12.0
|
| 84 |
+
toolz==0.12.0
|
| 85 |
torch==2.1.1
|
| 86 |
+
torchvision==0.16.1
|
| 87 |
+
tqdm==4.66.1
|
| 88 |
+
transformers==4.36.1
|
| 89 |
+
triton==2.1.0
|
| 90 |
+
typer==0.12.3
|
| 91 |
+
typing-extensions==4.9.0
|
| 92 |
+
tzdata==2023.3
|
| 93 |
+
urllib3==2.1.0
|
| 94 |
+
uvicorn==0.24.0.post1
|
| 95 |
+
wcwidth==0.2.12
|
| 96 |
+
websockets==11.0.3
|
| 97 |
+
zipp==3.17.0
|
utils.py
CHANGED
|
@@ -106,32 +106,20 @@ def find_image(language_model,clip_model, text_query, dataset, image_features, t
|
|
| 106 |
probs = txt_logits.softmax(dim=-1).cpu().detach().numpy().T
|
| 107 |
|
| 108 |
file_paths = []
|
| 109 |
-
labels
|
| 110 |
|
| 111 |
for i in range(1, num+1):
|
| 112 |
idx = np.argsort(probs, axis=0)[-i, 0]
|
| 113 |
path = images_path + dataset.get_image_name(idx)
|
| 114 |
|
| 115 |
-
path_l = (path,
|
| 116 |
|
| 117 |
labels[f" Image # {i}"] = probs[idx]
|
| 118 |
-
json_data[f" Image # {i}"] = sorted_data[idx]
|
| 119 |
|
| 120 |
file_paths.append(path_l)
|
| 121 |
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
for _, txt_logits_full in text_logits.items():
|
| 126 |
-
|
| 127 |
-
probs_text = txt_logits_full.softmax(dim=-1).cpu().detach().numpy().T
|
| 128 |
-
|
| 129 |
-
for j in range(1, num+1):
|
| 130 |
-
|
| 131 |
-
idx = np.argsort(probs_text, axis=0)[-j, 0]
|
| 132 |
-
json_text[f" Text # {j}"] = sorted_data[idx]
|
| 133 |
-
|
| 134 |
-
return file_paths, labels, json_data, json_text
|
| 135 |
|
| 136 |
|
| 137 |
|
|
@@ -163,12 +151,12 @@ araclip = AraClip()
|
|
| 163 |
def predict(text, num, dadtaset_select):
|
| 164 |
|
| 165 |
if dadtaset_select == "XTD dataset":
|
| 166 |
-
image_paths, labels
|
| 167 |
|
| 168 |
else:
|
| 169 |
-
image_paths, labels
|
| 170 |
|
| 171 |
-
return image_paths, labels
|
| 172 |
|
| 173 |
|
| 174 |
class Mclip():
|
|
@@ -203,10 +191,10 @@ def predict_mclip(text, num, dadtaset_select):
|
|
| 203 |
|
| 204 |
|
| 205 |
if dadtaset_select == "XTD dataset":
|
| 206 |
-
image_paths, labels
|
| 207 |
|
| 208 |
else:
|
| 209 |
-
image_paths, labels
|
| 210 |
|
| 211 |
|
| 212 |
-
return image_paths, labels
|
|
|
|
| 106 |
probs = txt_logits.softmax(dim=-1).cpu().detach().numpy().T
|
| 107 |
|
| 108 |
file_paths = []
|
| 109 |
+
labels = {}
|
| 110 |
|
| 111 |
for i in range(1, num+1):
|
| 112 |
idx = np.argsort(probs, axis=0)[-i, 0]
|
| 113 |
path = images_path + dataset.get_image_name(idx)
|
| 114 |
|
| 115 |
+
path_l = (path, "")
|
| 116 |
|
| 117 |
labels[f" Image # {i}"] = probs[idx]
|
|
|
|
| 118 |
|
| 119 |
file_paths.append(path_l)
|
| 120 |
|
| 121 |
|
| 122 |
+
return file_paths, labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
|
| 125 |
|
|
|
|
| 151 |
def predict(text, num, dadtaset_select):
|
| 152 |
|
| 153 |
if dadtaset_select == "XTD dataset":
|
| 154 |
+
image_paths, labels = find_image(araclip.language_model,araclip.clip_model, text, araclip.load_xtd_dataset(), araclip.load_pickle_file("cashed_pickles/XTD_pickles/araclip/image_features_XTD_1000_images_arabert_siglib_best_model.pickle") , araclip.load_pickle_file("cashed_pickles/XTD_pickles/araclip/image_features_XTD_1000_images_arabert_siglib_best_model.pickle"), araclip.sorted_data_xtd, 'photos/XTD10_dataset/', num=int(num))
|
| 155 |
|
| 156 |
else:
|
| 157 |
+
image_paths, labels = find_image(araclip.language_model,araclip.clip_model, text, araclip.load_flicker8k_dataset(), araclip.load_pickle_file("cashed_pickles/flicker_8k/araclip/image_features_flicker_8k_images_arabert_siglib_best_model.pickle") , araclip.load_pickle_file("cashed_pickles/flicker_8k/araclip/text_features_flicker_8k_images_arabert_siglib_best_model.pickle"), araclip.sorted_data_flicker8k, "photos/Flicker8k_Dataset/", num=int(num))
|
| 158 |
|
| 159 |
+
return image_paths, labels
|
| 160 |
|
| 161 |
|
| 162 |
class Mclip():
|
|
|
|
| 191 |
|
| 192 |
|
| 193 |
if dadtaset_select == "XTD dataset":
|
| 194 |
+
image_paths, labels = find_image(mclip.language_model_mclip,mclip.clip_model_mclip, text, mclip.load_xtd_dataset() , mclip.load_pickle_file("cashed_pickles/XTD_pickles/mclip/image_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle") , mclip.load_pickle_file("cashed_pickles/XTD_pickles/mclip/text_features_XTD_1000_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle") , mclip.sorted_data_xtd , 'photos/XTD10_dataset/', num=int(num))
|
| 195 |
|
| 196 |
else:
|
| 197 |
+
image_paths, labels = find_image(mclip.language_model_mclip,mclip.clip_model_mclip, text, mclip.load_flicker8k_dataset() , mclip.load_pickle_file("cashed_pickles/flicker_8k/mclip/image_features_flicker_8k_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle") , mclip.load_pickle_file("cashed_pickles/flicker_8k/mclip/text_features_flicker_8k_images_XLM_Roberta_Large_Vit_B_16Plus_ar.pickle") , mclip.sorted_data_flicker8k , 'photos/Flicker8k_Dataset/', num=int(num))
|
| 198 |
|
| 199 |
|
| 200 |
+
return image_paths, labels
|