Spaces:
Sleeping
Sleeping
Upload 29 files
Browse files- .gitattributes +7 -0
- app.py +130 -0
- apps/__init__.py +0 -0
- apps/__pycache__/__init__.cpython-310.pyc +0 -0
- apps/__pycache__/classical_morpher.cpython-310.pyc +0 -0
- apps/__pycache__/gan_morpher.cpython-310.pyc +0 -0
- apps/__pycache__/utils.cpython-310.pyc +0 -0
- apps/classical_morpher.py +107 -0
- apps/gan_morpher.py +58 -0
- apps/utils.py +61 -0
- assets/1144_r_1.png +3 -0
- assets/1147_r_1.png +3 -0
- assets/1162_r_9.png +3 -0
- assets/1163_r_17.png +3 -0
- assets/1172_l_1.png +3 -0
- assets/1177_l_1.png +3 -0
- assets/2517_r_9.png +3 -0
- assets/3243_l_1.png +0 -0
- config/__init__.py +0 -0
- config/config.yaml +62 -0
- models/ResNet_Model.py +51 -0
- models/__init__.py +22 -0
- models/__pycache__/ResNet_Model.cpython-310.pyc +0 -0
- models/__pycache__/__init__.cpython-310.pyc +0 -0
- models/__pycache__/landmark_predictor.cpython-310.pyc +0 -0
- models/__pycache__/models.cpython-310.pyc +0 -0
- models/__pycache__/test_models.cpython-310.pyc +0 -0
- models/landmark_predictor.py +24 -0
- models/models.py +132 -0
- requirements.txt +10 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/1144_r_1.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
assets/1147_r_1.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
assets/1162_r_9.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
assets/1163_r_17.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
assets/1172_l_1.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
assets/1177_l_1.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
assets/2517_r_9.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import yaml
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from collections import OrderedDict
|
| 6 |
+
|
| 7 |
+
# --- Local project imports ---
|
| 8 |
+
from apps.gan_morpher import morph_images_with_gan
|
| 9 |
+
from models.models import Generator, Encoder, LandmarkEncoder
|
| 10 |
+
from models.landmark_predictor import OcularLMGenerator
|
| 11 |
+
|
| 12 |
+
# --- 1. Define Constants and Configuration ---
|
| 13 |
+
MODEL_REPO_ID = "BharathK333/DOOMGAN"
|
| 14 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
EPOCH = 450 # The epoch for the models we want to load
|
| 16 |
+
|
| 17 |
+
print("--- Initializing Gradio App: Downloading and Loading Models ---")
|
| 18 |
+
|
| 19 |
+
# --- 2. Function to Load Models from Hugging Face Hub ---
|
| 20 |
+
@gr.cache_resource() # This decorator caches the models, so they are loaded only once.
|
| 21 |
+
def load_models_from_hub():
|
| 22 |
+
"""
|
| 23 |
+
Downloads all necessary files from the Hugging Face Hub and loads the models.
|
| 24 |
+
"""
|
| 25 |
+
# --- Download Model Files from the Model Repo ---
|
| 26 |
+
g_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=f"G_{EPOCH}.pth")
|
| 27 |
+
e_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=f"E_{EPOCH}.pth")
|
| 28 |
+
le_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename=f"LE_{EPOCH}.pth")
|
| 29 |
+
lp_path = hf_hub_download(repo_id=MODEL_REPO_ID, filename="landmark_predictor.pth")
|
| 30 |
+
|
| 31 |
+
with open('config/config.yaml', 'r') as f:
|
| 32 |
+
config = yaml.safe_load(f)
|
| 33 |
+
|
| 34 |
+
model_cfg = config['model']
|
| 35 |
+
data_cfg = config['data']
|
| 36 |
+
|
| 37 |
+
# Helper function to remove 'module.' prefix from state dict keys
|
| 38 |
+
def remove_module_prefix(state_dict):
|
| 39 |
+
new_state_dict = OrderedDict()
|
| 40 |
+
for k, v in state_dict.items():
|
| 41 |
+
name = k[7:] if k.startswith('module.') else k
|
| 42 |
+
new_state_dict[name] = v
|
| 43 |
+
return new_state_dict
|
| 44 |
+
|
| 45 |
+
# --- Initialize and Load the specific GAN Models (G, E, LE) ---
|
| 46 |
+
gan_models_init = {
|
| 47 |
+
'netG': Generator(nz=model_cfg['nz'], ngf=model_cfg['ngf'], nc=data_cfg['nc'], landmark_feature_size=model_cfg['landmark_feature_size']),
|
| 48 |
+
'netE': Encoder(nc=data_cfg['nc'], ndf=model_cfg['ndf'], nz=model_cfg['nz'], num_landmarks=model_cfg['num_landmarks']),
|
| 49 |
+
'landmark_encoder': LandmarkEncoder(input_dim=model_cfg['num_landmarks'] * 2, output_dim=model_cfg['landmark_feature_size'])
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
model_paths = {'netG': g_path, 'netE': e_path, 'landmark_encoder': le_path}
|
| 53 |
+
loaded_models = {}
|
| 54 |
+
|
| 55 |
+
for name, model in gan_models_init.items():
|
| 56 |
+
print(f"Loading {name} model...")
|
| 57 |
+
state_dict = torch.load(model_paths[name], map_location=DEVICE)
|
| 58 |
+
state_dict = remove_module_prefix(state_dict)
|
| 59 |
+
model.load_state_dict(state_dict)
|
| 60 |
+
model.to(DEVICE).eval()
|
| 61 |
+
loaded_models[name] = model
|
| 62 |
+
|
| 63 |
+
# --- Initialize and Load Landmark Predictor ---
|
| 64 |
+
print("Loading Landmark Predictor model...")
|
| 65 |
+
landmark_predictor = OcularLMGenerator().to(DEVICE)
|
| 66 |
+
state_dict_lp = torch.load(lp_path, map_location=DEVICE)
|
| 67 |
+
state_dict_lp = remove_module_prefix(state_dict_lp)
|
| 68 |
+
landmark_predictor.load_state_dict(state_dict_lp)
|
| 69 |
+
landmark_predictor.eval()
|
| 70 |
+
loaded_models['landmark_predictor'] = landmark_predictor
|
| 71 |
+
|
| 72 |
+
print(f"--- All models loaded successfully on {DEVICE} ---")
|
| 73 |
+
return config, loaded_models
|
| 74 |
+
|
| 75 |
+
# Load everything when the app starts
|
| 76 |
+
config, models = load_models_from_hub()
|
| 77 |
+
|
| 78 |
+
# --- 3. Define the core processing function for Gradio ---
|
| 79 |
+
def run_gan_morph(image1, image2, alpha):
|
| 80 |
+
if image1 is None or image2 is None:
|
| 81 |
+
raise gr.Error("Please upload both source images to generate a morph.")
|
| 82 |
+
|
| 83 |
+
print(f"Performing GAN morph with alpha={alpha}...")
|
| 84 |
+
morphed_image_numpy = morph_images_with_gan(image1, image2, config, DEVICE, models, alpha)
|
| 85 |
+
print("GAN morph complete.")
|
| 86 |
+
return morphed_image_numpy
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# --- 4. Build the Gradio Interface ---
|
| 90 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="DOOMGAN Morphing") as demo:
|
| 91 |
+
gr.Markdown(
|
| 92 |
+
"""
|
| 93 |
+
# DOOMGAN: High-Fidelity Ocular Image Morphing
|
| 94 |
+
An interactive demonstration of the IJCB-accepted **DOOMGAN** project.
|
| 95 |
+
Upload two ocular images, or use the examples below, and use the slider to morph between them.
|
| 96 |
+
"""
|
| 97 |
+
)
|
| 98 |
+
with gr.Row():
|
| 99 |
+
img1 = gr.Image(type="pil", label="Source Image 1")
|
| 100 |
+
img2 = gr.Image(type="pil", label="Source Image 2")
|
| 101 |
+
|
| 102 |
+
alpha_slider = gr.Slider(
|
| 103 |
+
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
|
| 104 |
+
label="Interpolation Factor (Image 1 <-> Image 2)",
|
| 105 |
+
info="Slide towards 0 to resemble Image 1, or towards 1 to resemble Image 2."
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
output_img = gr.Image(type="pil", label="Morphed Result")
|
| 109 |
+
run_button = gr.Button("Generate Morph", variant="primary")
|
| 110 |
+
|
| 111 |
+
gr.Examples(
|
| 112 |
+
examples=[
|
| 113 |
+
["assets/1144_r_1.png", "assets/1147_r_1.png", 0.5],
|
| 114 |
+
["assets/1162_r_9.png", "assets/1163_r_17.png", 0.3],
|
| 115 |
+
["assets/1172_l_1.png", "assets/1177_l_1.png", 0.7],
|
| 116 |
+
["assets/2517_r_9.png", "assets/3243_l_1.png", 0.5],
|
| 117 |
+
],
|
| 118 |
+
inputs=[img1, img2, alpha_slider],
|
| 119 |
+
outputs=output_img,
|
| 120 |
+
fn=run_gan_morph,
|
| 121 |
+
cache_examples=True # Caches the results for instant loading
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# --- 5. Connect the UI components to the function ---
|
| 125 |
+
run_button.click(
|
| 126 |
+
fn=run_gan_morph,
|
| 127 |
+
inputs=[img1, img2, alpha_slider],
|
| 128 |
+
outputs=[output_img],
|
| 129 |
+
api_name="morph"
|
| 130 |
+
)
|
apps/__init__.py
ADDED
|
File without changes
|
apps/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (136 Bytes). View file
|
|
|
apps/__pycache__/classical_morpher.cpython-310.pyc
ADDED
|
Binary file (4.07 kB). View file
|
|
|
apps/__pycache__/gan_morpher.cpython-310.pyc
ADDED
|
Binary file (2.25 kB). View file
|
|
|
apps/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (2.17 kB). View file
|
|
|
apps/classical_morpher.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torchvision.transforms import ToTensor, Resize, Compose, Normalize
|
| 5 |
+
|
| 6 |
+
def predict_landmarks_for_classical(image, landmark_predictor_model, device):
|
| 7 |
+
"""Predicts landmarks and returns them as an unnormalized tensor for OpenCV."""
|
| 8 |
+
transform = Compose([
|
| 9 |
+
Resize((256, 256)),
|
| 10 |
+
ToTensor(),
|
| 11 |
+
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 12 |
+
])
|
| 13 |
+
image_transformed = transform(image).unsqueeze(0).to(device)
|
| 14 |
+
|
| 15 |
+
with torch.no_grad():
|
| 16 |
+
landmarks = landmark_predictor_model(image_transformed).squeeze(0).cpu()
|
| 17 |
+
# Use 38 landmarks (19 pairs) to match the original LM-1 behavior
|
| 18 |
+
landmarks = landmarks[:38]
|
| 19 |
+
landmarks = landmarks.view(-1, 2)
|
| 20 |
+
return landmarks
|
| 21 |
+
|
| 22 |
+
def _extract_index_nparray(nparray):
|
| 23 |
+
"""Helper function to extract index from numpy where clause."""
|
| 24 |
+
return nparray[0][0] if len(nparray[0]) > 0 else None
|
| 25 |
+
|
| 26 |
+
def _tensor_to_int_array(tensor):
|
| 27 |
+
"""Converts a landmark tensor to a list of integer tuples."""
|
| 28 |
+
return [(int(x[0]), int(x[1])) for x in tensor.numpy()]
|
| 29 |
+
|
| 30 |
+
def ocular_morph_classical(img1_pil, img2_pil, landmarks1_tensor, landmarks2_tensor):
|
| 31 |
+
"""Performs landmark-based morphing using Delaunay triangulation and seamless cloning."""
|
| 32 |
+
img1 = cv2.cvtColor(np.array(img1_pil), cv2.COLOR_RGB2BGR)
|
| 33 |
+
img2 = cv2.cvtColor(np.array(img2_pil), cv2.COLOR_RGB2BGR)
|
| 34 |
+
|
| 35 |
+
points1 = _tensor_to_int_array(landmarks1_tensor)
|
| 36 |
+
points2 = _tensor_to_int_array(landmarks2_tensor)
|
| 37 |
+
|
| 38 |
+
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
| 39 |
+
# --- FIX: Define img2_gray, which was previously missing. ---
|
| 40 |
+
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
| 41 |
+
|
| 42 |
+
mask = np.zeros_like(img1_gray)
|
| 43 |
+
|
| 44 |
+
points_np = np.array(points1, np.int32)
|
| 45 |
+
convexhull = cv2.convexHull(points_np)
|
| 46 |
+
cv2.fillConvexPoly(mask, convexhull, 255)
|
| 47 |
+
|
| 48 |
+
rect = cv2.boundingRect(convexhull)
|
| 49 |
+
subdiv = cv2.Subdiv2D(rect)
|
| 50 |
+
subdiv.insert(points1)
|
| 51 |
+
triangles = subdiv.getTriangleList()
|
| 52 |
+
triangles = np.array(triangles, dtype=np.int32)
|
| 53 |
+
|
| 54 |
+
indexes_triangles = []
|
| 55 |
+
for t in triangles:
|
| 56 |
+
pt1, pt2, pt3 = (t[0], t[1]), (t[2], t[3]), (t[4], t[5])
|
| 57 |
+
index_pt1 = _extract_index_nparray(np.where((points_np == pt1).all(axis=1)))
|
| 58 |
+
index_pt2 = _extract_index_nparray(np.where((points_np == pt2).all(axis=1)))
|
| 59 |
+
index_pt3 = _extract_index_nparray(np.where((points_np == pt3).all(axis=1)))
|
| 60 |
+
|
| 61 |
+
if all(idx is not None for idx in [index_pt1, index_pt2, index_pt3]):
|
| 62 |
+
indexes_triangles.append([index_pt1, index_pt2, index_pt3])
|
| 63 |
+
|
| 64 |
+
img2_new_face = np.zeros_like(img2)
|
| 65 |
+
|
| 66 |
+
for triangle_index in indexes_triangles:
|
| 67 |
+
tr1_pt1, tr1_pt2, tr1_pt3 = points1[triangle_index[0]], points1[triangle_index[1]], points1[triangle_index[2]]
|
| 68 |
+
tr2_pt1, tr2_pt2, tr2_pt3 = points2[triangle_index[0]], points2[triangle_index[1]], points2[triangle_index[2]]
|
| 69 |
+
|
| 70 |
+
triangle1 = np.array([tr1_pt1, tr1_pt2, tr1_pt3], np.int32)
|
| 71 |
+
triangle2 = np.array([tr2_pt1, tr2_pt2, tr2_pt3], np.int32)
|
| 72 |
+
|
| 73 |
+
rect1 = cv2.boundingRect(triangle1)
|
| 74 |
+
(x1, y1, w1, h1) = rect1
|
| 75 |
+
cropped_triangle = img1[y1: y1 + h1, x1: x1 + w1]
|
| 76 |
+
points_rel1 = np.array([[tr1_pt1[0] - x1, tr1_pt1[1] - y1], [tr1_pt2[0] - x1, tr1_pt2[1] - y1], [tr1_pt3[0] - x1, tr1_pt3[1] - y1]], np.float32)
|
| 77 |
+
|
| 78 |
+
rect2 = cv2.boundingRect(triangle2)
|
| 79 |
+
(x2, y2, w2, h2) = rect2
|
| 80 |
+
points_rel2 = np.array([[tr2_pt1[0] - x2, tr2_pt1[1] - y2], [tr2_pt2[0] - x2, tr2_pt2[1] - y2], [tr2_pt3[0] - x2, tr2_pt3[1] - y2]], np.float32)
|
| 81 |
+
|
| 82 |
+
M = cv2.getAffineTransform(points_rel1, points_rel2)
|
| 83 |
+
warped_triangle = cv2.warpAffine(cropped_triangle, M, (w2, h2))
|
| 84 |
+
|
| 85 |
+
cropped_tr2_mask = np.zeros((h2, w2), np.uint8)
|
| 86 |
+
cv2.fillConvexPoly(cropped_tr2_mask, np.int32(points_rel2), 255)
|
| 87 |
+
|
| 88 |
+
warped_triangle = cv2.bitwise_and(warped_triangle, warped_triangle, mask=cropped_tr2_mask)
|
| 89 |
+
|
| 90 |
+
img2_new_face_rect_area = img2_new_face[y2: y2 + h2, x2: x2 + w2]
|
| 91 |
+
img2_new_face_rect_area_gray = cv2.cvtColor(img2_new_face_rect_area, cv2.COLOR_BGR2GRAY)
|
| 92 |
+
_, mask_triangles_designed = cv2.threshold(img2_new_face_rect_area_gray, 1, 255, cv2.THRESH_BINARY_INV)
|
| 93 |
+
warped_triangle = cv2.bitwise_and(warped_triangle, warped_triangle, mask=mask_triangles_designed)
|
| 94 |
+
|
| 95 |
+
img2_new_face_rect_area = cv2.add(img2_new_face_rect_area, warped_triangle)
|
| 96 |
+
img2_new_face[y2: y2 + h2, x2: x2 + w2] = img2_new_face_rect_area
|
| 97 |
+
|
| 98 |
+
img2_face_mask = np.zeros_like(img2_gray)
|
| 99 |
+
convexhull2 = cv2.convexHull(np.array(points2, np.int32))
|
| 100 |
+
img2_head_mask = cv2.fillConvexPoly(img2_face_mask, convexhull2, 255)
|
| 101 |
+
|
| 102 |
+
(x, y, w, h) = cv2.boundingRect(convexhull2)
|
| 103 |
+
center_face2 = (int(x + w / 2), int(y + h / 2))
|
| 104 |
+
|
| 105 |
+
seamlessclone = cv2.seamlessClone(img2_new_face, img2, img2_head_mask, center_face2, cv2.NORMAL_CLONE)
|
| 106 |
+
|
| 107 |
+
return cv2.cvtColor(seamlessclone, cv2.COLOR_BGR2RGB)
|
apps/gan_morpher.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torchvision.transforms import ToTensor, Resize, Compose, Normalize
|
| 3 |
+
from utils import create_landmark_heatmaps
|
| 4 |
+
|
| 5 |
+
def predict_landmarks_for_gan(image, landmark_predictor_model, device):
|
| 6 |
+
"""Predicts landmarks and formats them specifically for the GAN pipeline."""
|
| 7 |
+
transform = Compose([
|
| 8 |
+
Resize((256, 256)),
|
| 9 |
+
ToTensor(),
|
| 10 |
+
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 11 |
+
])
|
| 12 |
+
image_transformed = transform(image).unsqueeze(0).to(device)
|
| 13 |
+
|
| 14 |
+
with torch.no_grad():
|
| 15 |
+
landmarks = landmark_predictor_model(image_transformed).squeeze(0).cpu()
|
| 16 |
+
landmarks = landmarks[:38] # Corresponds to 19 landmarks (x,y)
|
| 17 |
+
landmarks = landmarks.view(-1, 2)
|
| 18 |
+
# Normalize to [0, 1] range for heatmap generation
|
| 19 |
+
landmarks[:, 0] /= 256.0
|
| 20 |
+
landmarks[:, 1] /= 256.0
|
| 21 |
+
landmarks = landmarks.flatten()
|
| 22 |
+
|
| 23 |
+
return landmarks.unsqueeze(0) # Return with a batch dimension
|
| 24 |
+
|
| 25 |
+
def process_image_for_gan(image, config, device, models):
|
| 26 |
+
"""Processes a single image to get its latent vector (z) and landmark features (lf)."""
|
| 27 |
+
image_tensor = Compose([
|
| 28 |
+
Resize((config['data']['image_size'], config['data']['image_size'])),
|
| 29 |
+
ToTensor(),
|
| 30 |
+
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
| 31 |
+
])(image).unsqueeze(0).to(device)
|
| 32 |
+
|
| 33 |
+
landmarks = predict_landmarks_for_gan(image, models['landmark_predictor'], device).to(device)
|
| 34 |
+
heatmap = create_landmark_heatmaps(landmarks, image_size=config['data']['image_size']).to(device)
|
| 35 |
+
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
landmark_features = models['landmark_encoder'](landmarks)
|
| 38 |
+
z = models['netE'](image_tensor, heatmap)
|
| 39 |
+
|
| 40 |
+
return z, landmark_features
|
| 41 |
+
|
| 42 |
+
def morph_images_with_gan(image1, image2, config, device, models, alpha=0.5):
|
| 43 |
+
"""Generates a morphed image using the GAN with a given interpolation factor."""
|
| 44 |
+
z1, lf1 = process_image_for_gan(image1, config, device, models)
|
| 45 |
+
z2, lf2 = process_image_for_gan(image2, config, device, models)
|
| 46 |
+
|
| 47 |
+
# Interpolate in both latent and landmark feature spaces
|
| 48 |
+
z_morph = (1 - alpha) * z1 + alpha * z2
|
| 49 |
+
lf_morph = (1 - alpha) * lf1 + alpha * lf2
|
| 50 |
+
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
morphed_image_tensor = models['netG'](z_morph, lf_morph)
|
| 53 |
+
|
| 54 |
+
# Denormalize from [-1, 1] to [0, 1] for display
|
| 55 |
+
morphed_image = (morphed_image_tensor * 0.5 + 0.5).clamp(0, 1)
|
| 56 |
+
morphed_image_numpy = morphed_image.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
| 57 |
+
|
| 58 |
+
return morphed_image_numpy
|
apps/utils.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from collections import OrderedDict
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# Local project imports
|
| 7 |
+
from models import Generator, Encoder, LandmarkEncoder
|
| 8 |
+
from models.landmark_predictor import OcularLMGenerator
|
| 9 |
+
|
| 10 |
+
def remove_module_prefix(state_dict):
|
| 11 |
+
"""Removes the 'module.' prefix from state dict keys if it exists."""
|
| 12 |
+
new_state_dict = OrderedDict()
|
| 13 |
+
for k, v in state_dict.items():
|
| 14 |
+
name = k[7:] if k.startswith('module.') else k
|
| 15 |
+
new_state_dict[name] = v
|
| 16 |
+
return new_state_dict
|
| 17 |
+
|
| 18 |
+
def load_all_models(config, epoch, device):
|
| 19 |
+
"""Loads and initializes all models needed for the Streamlit app."""
|
| 20 |
+
model_cfg = config['model']
|
| 21 |
+
data_cfg = config['data']
|
| 22 |
+
paths_cfg = config['paths']
|
| 23 |
+
|
| 24 |
+
# --- 1. Load the main GAN models (G, E, LE) ---
|
| 25 |
+
gan_models = {
|
| 26 |
+
'G': Generator(nz=model_cfg['nz'], ngf=model_cfg['ngf'], nc=data_cfg['nc'], landmark_feature_size=model_cfg['landmark_feature_size']),
|
| 27 |
+
'E': Encoder(nc=data_cfg['nc'], ndf=model_cfg['ndf'], nz=model_cfg['nz'], num_landmarks=model_cfg['num_landmarks']),
|
| 28 |
+
'LE': LandmarkEncoder(input_dim=model_cfg['num_landmarks'] * 2, output_dim=model_cfg['landmark_feature_size'])
|
| 29 |
+
}
|
| 30 |
+
for name, model in gan_models.items():
|
| 31 |
+
model_path = os.path.join(paths_cfg['outputs'][name], f'{name.lower()}_epoch_{epoch}.pth')
|
| 32 |
+
print(f"Loading {name} model from: {model_path}")
|
| 33 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 34 |
+
state_dict = remove_module_prefix(state_dict)
|
| 35 |
+
model.load_state_dict(state_dict)
|
| 36 |
+
model.to(device).eval()
|
| 37 |
+
|
| 38 |
+
# --- 2. Load the separate Landmark Predictor model ---
|
| 39 |
+
lp_path = paths_cfg['inputs']['landmark_predictor_model']
|
| 40 |
+
print(f"Loading Landmark Predictor from: {lp_path}")
|
| 41 |
+
landmark_predictor = OcularLMGenerator().to(device)
|
| 42 |
+
state_dict_lp = torch.load(lp_path, map_location=device)
|
| 43 |
+
state_dict_lp = remove_module_prefix(state_dict_lp)
|
| 44 |
+
landmark_predictor.load_state_dict(state_dict_lp)
|
| 45 |
+
landmark_predictor.eval()
|
| 46 |
+
|
| 47 |
+
# Return all models in a dictionary for easy access
|
| 48 |
+
return {
|
| 49 |
+
'netG': gan_models['G'],
|
| 50 |
+
'netE': gan_models['E'],
|
| 51 |
+
'landmark_encoder': gan_models['LE'],
|
| 52 |
+
'landmark_predictor': landmark_predictor
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
def load_image(file):
|
| 56 |
+
"""Safely loads an image file into a PIL Image object."""
|
| 57 |
+
try:
|
| 58 |
+
image = Image.open(file).convert('RGB')
|
| 59 |
+
return image
|
| 60 |
+
except Exception as e:
|
| 61 |
+
raise ValueError(f"Error loading image: {str(e)}")
|
assets/1144_r_1.png
ADDED
|
Git LFS Details
|
assets/1147_r_1.png
ADDED
|
Git LFS Details
|
assets/1162_r_9.png
ADDED
|
Git LFS Details
|
assets/1163_r_17.png
ADDED
|
Git LFS Details
|
assets/1172_l_1.png
ADDED
|
Git LFS Details
|
assets/1177_l_1.png
ADDED
|
Git LFS Details
|
assets/2517_r_9.png
ADDED
|
Git LFS Details
|
assets/3243_l_1.png
ADDED
|
config/__init__.py
ADDED
|
File without changes
|
config/config.yaml
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# config/config.yaml
|
| 2 |
+
|
| 3 |
+
# --- General Settings ---
|
| 4 |
+
project_name: "OcularMorph-DOOMGAN"
|
| 5 |
+
manual_seed: 42
|
| 6 |
+
ngpu: 1
|
| 7 |
+
use_deterministic_algorithms: true
|
| 8 |
+
device: "cuda:1"
|
| 9 |
+
|
| 10 |
+
# --- Data Settings ---
|
| 11 |
+
data:
|
| 12 |
+
image_root: "data/filtered_output"
|
| 13 |
+
landmark_json_path: "data/landmarks_GAN.json"
|
| 14 |
+
image_size: 256
|
| 15 |
+
nc: 3
|
| 16 |
+
workers: 4
|
| 17 |
+
|
| 18 |
+
# --- Model Hyperparameters ---
|
| 19 |
+
model:
|
| 20 |
+
nz: 200
|
| 21 |
+
ngf: 64
|
| 22 |
+
ndf: 64
|
| 23 |
+
num_landmarks: 19
|
| 24 |
+
landmark_feature_size: 128
|
| 25 |
+
|
| 26 |
+
# --- Training Hyperparameters ---
|
| 27 |
+
training:
|
| 28 |
+
num_epochs: 501
|
| 29 |
+
batch_size: 64
|
| 30 |
+
optimizer:
|
| 31 |
+
lr_g: 0.0002
|
| 32 |
+
lr_d: 0.00001
|
| 33 |
+
lr_e: 0.0002
|
| 34 |
+
lr_le: 0.0001
|
| 35 |
+
beta1: 0.5
|
| 36 |
+
beta2: 0.999
|
| 37 |
+
weight_decay: 0.00001
|
| 38 |
+
scheduler:
|
| 39 |
+
gamma_d: 0.9998
|
| 40 |
+
gamma_g: 0.9998
|
| 41 |
+
gamma_e: 0.9998
|
| 42 |
+
gamma_le: 0.9998
|
| 43 |
+
loss_weights:
|
| 44 |
+
gp: 10.0
|
| 45 |
+
initial_dynamic:
|
| 46 |
+
base: 50.0
|
| 47 |
+
ms_ssim: 30.0
|
| 48 |
+
perceptual: 50.0
|
| 49 |
+
reconstruction: 10.0
|
| 50 |
+
identity: 50.0
|
| 51 |
+
identity_diff: 40.0
|
| 52 |
+
|
| 53 |
+
# --- Paths ---
|
| 54 |
+
paths:
|
| 55 |
+
inputs:
|
| 56 |
+
arcface_model: "trained_models/resnet50_arcface.pth"
|
| 57 |
+
landmark_predictor_model: "trained_models/Ocular_LM_Generator.pth"
|
| 58 |
+
outputs:
|
| 59 |
+
G: "generator_models"
|
| 60 |
+
D: "discriminator_models"
|
| 61 |
+
E: "encoder_models"
|
| 62 |
+
LE: "landmark_encoder_models"
|
models/ResNet_Model.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torchvision.models as models
|
| 4 |
+
|
| 5 |
+
class ResNet50_ArcFace(nn.Module):
|
| 6 |
+
"""
|
| 7 |
+
ResNet-50 model modified for ArcFace loss.
|
| 8 |
+
Outputs embeddings that can be used for feature extraction.
|
| 9 |
+
"""
|
| 10 |
+
def __init__(self, embedding_size=512, pretrained=True):
|
| 11 |
+
super(ResNet50_ArcFace, self).__init__()
|
| 12 |
+
self.embedding_size = embedding_size
|
| 13 |
+
|
| 14 |
+
# Load a pre-trained ResNet-50 model
|
| 15 |
+
self.backbone = models.resnet50(pretrained=pretrained)
|
| 16 |
+
|
| 17 |
+
# Modify the final fully connected layer
|
| 18 |
+
# Replace the last fully connected layer with a linear layer to get embeddings
|
| 19 |
+
in_features = self.backbone.fc.in_features
|
| 20 |
+
self.backbone.fc = nn.Linear(in_features, self.embedding_size)
|
| 21 |
+
|
| 22 |
+
# Normalize the embedding vectors
|
| 23 |
+
self.l2_norm = nn.functional.normalize
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
x = self.backbone(x)
|
| 27 |
+
# Normalize embeddings to have unit length
|
| 28 |
+
x = self.l2_norm(x, p=2, dim=1)
|
| 29 |
+
return x
|
| 30 |
+
|
| 31 |
+
# Example usage
|
| 32 |
+
if __name__ == "__main__":
|
| 33 |
+
# Load config parameters if needed
|
| 34 |
+
import yaml
|
| 35 |
+
with open('config.yml', 'r') as f:
|
| 36 |
+
config = yaml.safe_load(f)
|
| 37 |
+
|
| 38 |
+
device = torch.device(config['device'] if torch.cuda.is_available() else 'cpu')
|
| 39 |
+
|
| 40 |
+
model = ResNet50_ArcFace(
|
| 41 |
+
embedding_size=config['embedding_size'],
|
| 42 |
+
pretrained=True
|
| 43 |
+
).to(device)
|
| 44 |
+
|
| 45 |
+
# Print model architecture
|
| 46 |
+
print(model)
|
| 47 |
+
|
| 48 |
+
# Test with a random input
|
| 49 |
+
dummy_input = torch.randn(1, 3, config['image_height'], config['image_width']).to(device)
|
| 50 |
+
embeddings = model(dummy_input)
|
| 51 |
+
print("Embeddings shape:", embeddings.shape)
|
models/__init__.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# All Required Model imports
|
| 2 |
+
from .models import (
|
| 3 |
+
weights_init,
|
| 4 |
+
SelfAttention,
|
| 5 |
+
ResidualBlock,
|
| 6 |
+
Encoder,
|
| 7 |
+
Generator,
|
| 8 |
+
Discriminator,
|
| 9 |
+
LandmarkEncoder
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
# Import for the ArcFace model
|
| 13 |
+
try:
|
| 14 |
+
from .ResNet_Model import ResNet50_ArcFace
|
| 15 |
+
except ImportError:
|
| 16 |
+
ResNet50_ArcFace = None
|
| 17 |
+
|
| 18 |
+
# Import the LM Predictor model for App
|
| 19 |
+
try:
|
| 20 |
+
from .landmark_predictor import OcularLMGenerator
|
| 21 |
+
except ImportError:
|
| 22 |
+
OcularLMGenerator = None
|
models/__pycache__/ResNet_Model.cpython-310.pyc
ADDED
|
Binary file (1.57 kB). View file
|
|
|
models/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (515 Bytes). View file
|
|
|
models/__pycache__/landmark_predictor.cpython-310.pyc
ADDED
|
Binary file (1.17 kB). View file
|
|
|
models/__pycache__/models.cpython-310.pyc
ADDED
|
Binary file (6.28 kB). View file
|
|
|
models/__pycache__/test_models.cpython-310.pyc
ADDED
|
Binary file (1.58 kB). View file
|
|
|
models/landmark_predictor.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
class OcularLMGenerator(nn.Module):
|
| 6 |
+
def __init__(self):
|
| 7 |
+
super(OcularLMGenerator, self).__init__()
|
| 8 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
|
| 9 |
+
self.pool = nn.MaxPool2d(2, 2)
|
| 10 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
| 11 |
+
self.fc1 = nn.Linear(64 * 64 * 64, 500)
|
| 12 |
+
self.fc2 = nn.Linear(500, 66) # Output the maximum number of landmarks
|
| 13 |
+
|
| 14 |
+
def forward(self, x):
|
| 15 |
+
x = self.pool(F.relu(self.conv1(x)))
|
| 16 |
+
x = self.pool(F.relu(self.conv2(x)))
|
| 17 |
+
x = x.view(-1, 64 * 64 * 64)
|
| 18 |
+
x = F.relu(self.fc1(x))
|
| 19 |
+
x = self.fc2(x)
|
| 20 |
+
return x
|
| 21 |
+
|
| 22 |
+
if __name__ == "__main__":
|
| 23 |
+
model = OcularLMGenerator()
|
| 24 |
+
print(model)
|
models/models.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
def weights_init(m):
|
| 5 |
+
"""
|
| 6 |
+
Applies custom weights initialization to a model's modules.
|
| 7 |
+
- Conv layers: He (Kaiming) normal initialization.
|
| 8 |
+
- InstanceNorm layers: Normal distribution for weights, constant for biases.
|
| 9 |
+
"""
|
| 10 |
+
classname = m.__class__.__name__
|
| 11 |
+
if classname.find('Conv') != -1:
|
| 12 |
+
# Use a fan-in He initialization for Conv layers
|
| 13 |
+
nn.init.kaiming_normal_(m.weight.data, a=0.2, mode='fan_in')
|
| 14 |
+
elif classname.find('InstanceNorm') != -1:
|
| 15 |
+
if m.weight is not None:
|
| 16 |
+
nn.init.normal_(m.weight.data, 1.0, 0.02)
|
| 17 |
+
if m.bias is not None:
|
| 18 |
+
nn.init.constant_(m.bias.data, 0)
|
| 19 |
+
|
| 20 |
+
class SelfAttention(nn.Module):
|
| 21 |
+
def __init__(self, in_channels):
|
| 22 |
+
super(SelfAttention, self).__init__()
|
| 23 |
+
self.query = nn.Conv2d(in_channels, in_channels // 8, 1)
|
| 24 |
+
self.key = nn.Conv2d(in_channels, in_channels // 8, 1)
|
| 25 |
+
self.value = nn.Conv2d(in_channels, in_channels, 1)
|
| 26 |
+
self.gamma = nn.Parameter(torch.zeros(1))
|
| 27 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 28 |
+
def forward(self, x):
|
| 29 |
+
B, C, W, H = x.size()
|
| 30 |
+
proj_query = self.query(x).view(B, -1, W * H).permute(0, 2, 1)
|
| 31 |
+
proj_key = self.key(x).view(B, -1, W * H)
|
| 32 |
+
attention = self.softmax(torch.bmm(proj_query, proj_key))
|
| 33 |
+
proj_value = self.value(x).view(B, -1, W * H)
|
| 34 |
+
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
|
| 35 |
+
out = out.view(B, C, W, H)
|
| 36 |
+
return self.gamma * out + x
|
| 37 |
+
|
| 38 |
+
class ResidualBlock(nn.Module):
|
| 39 |
+
def __init__(self, in_channels):
|
| 40 |
+
super(ResidualBlock, self).__init__()
|
| 41 |
+
self.block = nn.Sequential(
|
| 42 |
+
nn.Conv2d(in_channels, in_channels, 3, padding=1, bias=False),
|
| 43 |
+
nn.InstanceNorm2d(in_channels),
|
| 44 |
+
nn.ReLU(),
|
| 45 |
+
nn.Conv2d(in_channels, in_channels, 3, padding=1, bias=False),
|
| 46 |
+
nn.InstanceNorm2d(in_channels)
|
| 47 |
+
)
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
return x + self.block(x)
|
| 50 |
+
|
| 51 |
+
class Encoder(nn.Module):
|
| 52 |
+
def __init__(self, nc=3, ndf=64, nz=200, num_landmarks=19):
|
| 53 |
+
super(Encoder, self).__init__()
|
| 54 |
+
in_channels = nc + num_landmarks
|
| 55 |
+
self.model = nn.Sequential(
|
| 56 |
+
nn.Conv2d(in_channels, ndf, 4, 2, 1), nn.LeakyReLU(0.2),
|
| 57 |
+
nn.Conv2d(ndf, ndf*2, 4, 2, 1, bias=False), nn.InstanceNorm2d(ndf*2), nn.LeakyReLU(0.2),
|
| 58 |
+
nn.Conv2d(ndf*2, ndf*4, 4, 2, 1, bias=False), nn.InstanceNorm2d(ndf*4), nn.LeakyReLU(0.2),
|
| 59 |
+
nn.Conv2d(ndf*4, ndf*8, 4, 2, 1, bias=False), nn.InstanceNorm2d(ndf*8), nn.LeakyReLU(0.2),
|
| 60 |
+
ResidualBlock(ndf*8), SelfAttention(ndf*8),
|
| 61 |
+
nn.Conv2d(ndf*8, ndf*16, 4, 2, 1, bias=False), nn.InstanceNorm2d(ndf*16), nn.LeakyReLU(0.2),
|
| 62 |
+
nn.Conv2d(ndf*16, ndf*16, 4, 2, 1), nn.LeakyReLU(0.2),
|
| 63 |
+
nn.AdaptiveAvgPool2d(1),
|
| 64 |
+
nn.Conv2d(ndf * 16, nz, 1)
|
| 65 |
+
)
|
| 66 |
+
def forward(self, img, heatmaps):
|
| 67 |
+
return self.model(torch.cat([img, heatmaps], 1)).view(img.size(0), -1)
|
| 68 |
+
|
| 69 |
+
class Generator(nn.Module):
|
| 70 |
+
def __init__(self, nz=200, ngf=64, nc=3, landmark_feature_size=128):
|
| 71 |
+
super(Generator, self).__init__()
|
| 72 |
+
self.ngf = ngf
|
| 73 |
+
self.fc = nn.Sequential(
|
| 74 |
+
nn.Linear(nz + landmark_feature_size, ngf * 32 * 4 * 4),
|
| 75 |
+
nn.ReLU() # Removed inplace=True
|
| 76 |
+
)
|
| 77 |
+
def block(in_c, out_c):
|
| 78 |
+
return [nn.ConvTranspose2d(in_c, out_c, 4, 2, 1, bias=False), nn.InstanceNorm2d(out_c), nn.ReLU()]
|
| 79 |
+
self.main = nn.Sequential(
|
| 80 |
+
ResidualBlock(ngf * 32), # 4x4
|
| 81 |
+
*block(ngf*32, ngf*16), # 8x8
|
| 82 |
+
*block(ngf*16, ngf*8), # 16x16
|
| 83 |
+
SelfAttention(ngf * 8),
|
| 84 |
+
*block(ngf*8, ngf*4), # 32x32
|
| 85 |
+
*block(ngf*4, ngf*2), # 64x64
|
| 86 |
+
*block(ngf*2, ngf), # 128x128
|
| 87 |
+
nn.ConvTranspose2d(ngf, nc, 4, 2, 1), nn.Tanh() # 256x256
|
| 88 |
+
)
|
| 89 |
+
def forward(self, z, landmark_features):
|
| 90 |
+
x = self.fc(torch.cat([z, landmark_features], 1)).view(-1, self.ngf*32, 4, 4)
|
| 91 |
+
return self.main(x)
|
| 92 |
+
|
| 93 |
+
class Discriminator(nn.Module):
|
| 94 |
+
def __init__(self, nc=3, ndf=64, num_landmarks=19):
|
| 95 |
+
super(Discriminator, self).__init__()
|
| 96 |
+
in_channels = nc + num_landmarks
|
| 97 |
+
def block(in_c, out_c, norm=True, dropout=True):
|
| 98 |
+
layers = [nn.utils.spectral_norm(nn.Conv2d(in_c, out_c, 4, 2, 1)) if norm else nn.Conv2d(in_c, out_c, 4, 2, 1)]
|
| 99 |
+
layers.append(nn.LeakyReLU(0.2))
|
| 100 |
+
if dropout: layers.append(nn.Dropout(0.5))
|
| 101 |
+
layers.append(ResidualBlock(out_c))
|
| 102 |
+
return layers
|
| 103 |
+
self.model = nn.ModuleList([
|
| 104 |
+
nn.Sequential(*block(in_channels, ndf, norm=False, dropout=False)), # 128
|
| 105 |
+
nn.Sequential(*block(ndf, ndf * 2)), # 64
|
| 106 |
+
nn.Sequential(*block(ndf*2, ndf * 4)), # 32
|
| 107 |
+
nn.Sequential(SelfAttention(ndf*4), *block(ndf*4, ndf * 8)), # 16
|
| 108 |
+
nn.Sequential(*block(ndf*8, ndf * 16)), # 8
|
| 109 |
+
])
|
| 110 |
+
self.out_layers = nn.ModuleList([
|
| 111 |
+
nn.utils.spectral_norm(nn.Conv2d(ndf*2, 1, 3, 1, 1)),
|
| 112 |
+
nn.utils.spectral_norm(nn.Conv2d(ndf*4, 1, 3, 1, 1)),
|
| 113 |
+
nn.utils.spectral_norm(nn.Conv2d(ndf*8, 1, 3, 1, 1)),
|
| 114 |
+
nn.utils.spectral_norm(nn.Conv2d(ndf*16, 1, 3, 1, 1)),
|
| 115 |
+
])
|
| 116 |
+
def forward(self, img, heatmaps):
|
| 117 |
+
x = torch.cat([img, heatmaps], 1)
|
| 118 |
+
outputs = []
|
| 119 |
+
for i, layer in enumerate(self.model):
|
| 120 |
+
x = layer(x)
|
| 121 |
+
if i > 0: outputs.append(self.out_layers[i-1](x))
|
| 122 |
+
return outputs
|
| 123 |
+
|
| 124 |
+
class LandmarkEncoder(nn.Module):
|
| 125 |
+
def __init__(self, input_dim, output_dim):
|
| 126 |
+
super(LandmarkEncoder, self).__init__()
|
| 127 |
+
self.encoder = nn.Sequential(
|
| 128 |
+
nn.Linear(input_dim, 128), nn.LeakyReLU(0.2),
|
| 129 |
+
nn.Linear(128, output_dim), nn.LeakyReLU(0.2)
|
| 130 |
+
)
|
| 131 |
+
def forward(self, landmarks):
|
| 132 |
+
return self.encoder(landmarks)
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--find-links https://download.pytorch.org/whl/torch_stable.html
|
| 2 |
+
torch==2.2.1+cu118
|
| 3 |
+
torchvision==0.17.1+cu118
|
| 4 |
+
gradio
|
| 5 |
+
huggingface_hub
|
| 6 |
+
pyyaml
|
| 7 |
+
numpy
|
| 8 |
+
Pillow
|
| 9 |
+
scipy
|
| 10 |
+
opencv-python-headless
|