File size: 8,976 Bytes
252ce9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    SPEECH_BENCHMARK_COLS,
    COLS,
    COLS_SPEECH,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    AutoEvalColumnSpeech,
    ModelType,
    fields,
    WeightType,
    Precision, REGION_MAP
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import handle_csv_submission

text_sample_path = "src/submission_samples/model_name_text.csv"
speech_sample_path = "src/submission_samples/model_name_speech.csv"


def restart_space():
    API.restart_space(repo_id=REPO_ID)


### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
        token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
        token=TOKEN
    )
except Exception:
    restart_space()


(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard(dataframe, result_type='text'):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    column_class = AutoEvalColumn if result_type == "text" else AutoEvalColumnSpeech

    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(column_class)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(column_class) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(column_class) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        search_columns=[column_class.model.name],
        hide_columns=[c.name for c in fields(column_class) if c.hidden],
        filter_columns=[
            # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
            # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            # ColumnFilter(
            #     AutoEvalColumn.params.name,
            #     type="slider",
            #     min=0.01,
            #     max=150,
            #     label="Select the number of parameters (B)",
            # ),
            # ColumnFilter(
            #     AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
            # ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


leaderboard_dataframes = {
    region: get_leaderboard_df(
        EVAL_RESULTS_PATH,
        EVAL_REQUESTS_PATH,
        COLS,
        BENCHMARK_COLS,
        region if region != "All" else None,
        result_type="text"
    )
    for region in REGION_MAP.values()
}

leaderboard_dataframes_speech = {
    region: get_leaderboard_df(
        EVAL_RESULTS_PATH,
        EVAL_REQUESTS_PATH,
        COLS_SPEECH,
        SPEECH_BENCHMARK_COLS,
        region if region != "All" else None,
        result_type="speech"
    )
    for region in REGION_MAP.values()
}
# Preload leaderboard blocks
js_switch_code = """
(displayRegion) => {
    const regionMap = {
        "All": "All",
        "Africa": "Africa",
        "Americas/Oceania": "Americas_Oceania",
        "Asia (S)": "Asia_S",
        "Asia (SE)": "Asia_SE",
        "Asia (W, C)": "Asia_W_C",
        "Asia (E)": "Asia_E",
        "Europe (W, N, S)": "Europe_W_N_S",
        "Europe (E)": "Europe_E"
    };
    const region = regionMap[displayRegion];
    document.querySelectorAll('[id^="leaderboard-"]').forEach(el => el.classList.remove("visible"));
    const target = document.getElementById("leaderboard-" + region);
    if (target) {
        target.classList.add("visible");
        // 🧠 Trigger reflow to fix row cutoff
        void target.offsetHeight;  // Trigger reflow
        target.style.display = "none"; // Hide momentarily
        requestAnimationFrame(() => {
            target.style.display = "";
        });
    }
}
"""

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… mSTEB Text Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                region_dropdown = gr.Dropdown(
                    choices=list(REGION_MAP.keys()),
                    label="Select Region",
                    value="All",
                    interactive=True,
                )

            # Region-specific leaderboard containers
            for display_name, region_key in REGION_MAP.items():
                with gr.Column(
                        elem_id=f"leaderboard-{region_key}",
                        elem_classes=["visible"] if region_key == "All" else []
                ):
                    init_leaderboard(leaderboard_dataframes[region_key], result_type="text")

            # JS hook to toggle visible leaderboard
            region_dropdown.change(None, js=js_switch_code, inputs=[region_dropdown])

        with gr.TabItem("πŸ—£οΈ mSTEB Speech Benchmark", elem_id="speech-benchmark-tab-table", id=1):
            with gr.Row():
                speech_region_dropdown = gr.Dropdown(
                    choices=list(REGION_MAP.keys()),
                    label="Select Region",
                    value="All",
                    interactive=True,
                )

            for display_name, region_key in REGION_MAP.items():
                with gr.Column(
                        elem_id=f"speech-leaderboard-{region_key}",
                        elem_classes=["visible"] if region_key == "All" else []
                ):
                    init_leaderboard(leaderboard_dataframes_speech[region_key], result_type='speech')

            speech_region_dropdown.change(
                None,
                js=js_switch_code.replace("leaderboard-", "speech-leaderboard-"),
                inputs=[speech_region_dropdown]
            )
            
        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.File(
                    label="πŸ“„ Sample Text CSV",
                    value=text_sample_path,
                    interactive=False,
                    file_types=[".csv"]
                )
                gr.File(
                    label="πŸ“„ Sample Speech CSV",
                    value=speech_sample_path,
                    interactive=False,
                    file_types=[".csv"]
                )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Column():
                model_name_textbox = gr.Textbox(label="Model name")
                result_type = gr.Radio(choices=["text", "speech"], label="Result Type", value="text")
                csv_file = gr.File(label="Upload CSV File", file_types=[".csv"])

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()

            submit_button.click(
                handle_csv_submission,
                [
                    model_name_textbox,
                    csv_file,
                    result_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()