Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,7 +27,11 @@ from src.pipelines.pipeline_kandinsky_subject_prior import KandinskyPriorPipelin
|
|
| 27 |
from diffusers import DiffusionPipeline
|
| 28 |
from PIL import Image
|
| 29 |
|
| 30 |
-
__device__ = "
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
class Model:
|
| 33 |
def __init__(self):
|
|
@@ -37,7 +41,7 @@ class Model:
|
|
| 37 |
CLIPTextModelWithProjection.from_pretrained(
|
| 38 |
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
| 39 |
projection_dim=1280,
|
| 40 |
-
torch_dtype=
|
| 41 |
)
|
| 42 |
.eval()
|
| 43 |
.requires_grad_(False)
|
|
@@ -49,17 +53,17 @@ class Model:
|
|
| 49 |
|
| 50 |
prior = PriorTransformer.from_pretrained(
|
| 51 |
"ECLIPSE-Community/Lambda-ECLIPSE-Prior-v1.0",
|
| 52 |
-
torch_dtype=
|
| 53 |
)
|
| 54 |
|
| 55 |
self.pipe_prior = KandinskyPriorPipeline.from_pretrained(
|
| 56 |
"kandinsky-community/kandinsky-2-2-prior",
|
| 57 |
prior=prior,
|
| 58 |
-
torch_dtype=
|
| 59 |
).to(self.device)
|
| 60 |
|
| 61 |
self.pipe = DiffusionPipeline.from_pretrained(
|
| 62 |
-
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=
|
| 63 |
).to(self.device)
|
| 64 |
|
| 65 |
def inference(self, raw_data):
|
|
|
|
| 27 |
from diffusers import DiffusionPipeline
|
| 28 |
from PIL import Image
|
| 29 |
|
| 30 |
+
__device__ = "cpu"
|
| 31 |
+
__dtype__ = torch.float32
|
| 32 |
+
if torch.cuda.is_available():
|
| 33 |
+
__device__ = "cuda"
|
| 34 |
+
__dtype__ = torch.float16
|
| 35 |
|
| 36 |
class Model:
|
| 37 |
def __init__(self):
|
|
|
|
| 41 |
CLIPTextModelWithProjection.from_pretrained(
|
| 42 |
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
| 43 |
projection_dim=1280,
|
| 44 |
+
torch_dtype=__dtype__,
|
| 45 |
)
|
| 46 |
.eval()
|
| 47 |
.requires_grad_(False)
|
|
|
|
| 53 |
|
| 54 |
prior = PriorTransformer.from_pretrained(
|
| 55 |
"ECLIPSE-Community/Lambda-ECLIPSE-Prior-v1.0",
|
| 56 |
+
torch_dtype=__dtype__,
|
| 57 |
)
|
| 58 |
|
| 59 |
self.pipe_prior = KandinskyPriorPipeline.from_pretrained(
|
| 60 |
"kandinsky-community/kandinsky-2-2-prior",
|
| 61 |
prior=prior,
|
| 62 |
+
torch_dtype=__dtype__,
|
| 63 |
).to(self.device)
|
| 64 |
|
| 65 |
self.pipe = DiffusionPipeline.from_pretrained(
|
| 66 |
+
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=__dtype__
|
| 67 |
).to(self.device)
|
| 68 |
|
| 69 |
def inference(self, raw_data):
|