Edmilson Alexandre
commited on
Commit
·
d63f9a0
1
Parent(s):
b27d595
- API_fastapi_server.py +17 -30
API_fastapi_server.py
CHANGED
|
@@ -1,42 +1,29 @@
|
|
| 1 |
## An python API for our Model
|
| 2 |
## Design by edander32 (Edmilson Alexandre) and jjambo(Joaquim Jambo)
|
| 3 |
|
| 4 |
-
|
| 5 |
-
from pydantic import BaseModel
|
| 6 |
import pandas as pd
|
| 7 |
import joblib
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
)
|
| 18 |
-
model = joblib.load(model_path)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
# Substitua pelos nomes reais das features que seu modelo espera
|
| 23 |
-
feature1: float
|
| 24 |
-
feature2: float
|
| 25 |
-
feature3: float # e assim por diante
|
| 26 |
-
|
| 27 |
-
@app.get("/")
|
| 28 |
-
def home():
|
| 29 |
-
return {"message": "API do classificador de exoplanetas online."}
|
| 30 |
-
|
| 31 |
-
@app.post("/predict")
|
| 32 |
-
def predict(input_data: InputData):
|
| 33 |
-
try:
|
| 34 |
-
# Converte para DataFrame
|
| 35 |
-
df = pd.DataFrame([input_data.dict()])
|
| 36 |
-
pred = model.predict(df)[0]
|
| 37 |
-
prob = model.predict_proba(df)[0][1]
|
| 38 |
-
return {"prediction": int(pred), "probability": float(prob)}
|
| 39 |
-
except Exception as e:
|
| 40 |
-
raise HTTPException(status_code=400, detail=str(e))
|
| 41 |
|
| 42 |
|
|
|
|
| 1 |
## An python API for our Model
|
| 2 |
## Design by edander32 (Edmilson Alexandre) and jjambo(Joaquim Jambo)
|
| 3 |
|
| 4 |
+
import gradio as gr
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import joblib
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
|
| 9 |
+
# Carrega modelo
|
| 10 |
+
model_path = hf_hub_download(repo_id="Edalexan/ia-pkl", filename="exoplanet_model.pkl")
|
| 11 |
+
model = joblib.load(model_path)
|
| 12 |
|
| 13 |
+
def predict(feature1, feature2, feature3):
|
| 14 |
+
df = pd.DataFrame([[feature1, feature2, feature3]], columns=["feature1", "feature2", "feature3"])
|
| 15 |
+
pred = model.predict(df)[0]
|
| 16 |
+
prob = model.predict_proba(df)[0][1]
|
| 17 |
+
return {"prediction": int(pred), "probability": float(prob)}
|
| 18 |
+
|
| 19 |
+
# Interface mínima só para expor a API
|
| 20 |
+
iface = gr.Interface(
|
| 21 |
+
fn=predict,
|
| 22 |
+
inputs=["number", "number", "number"],
|
| 23 |
+
outputs="json"
|
| 24 |
)
|
|
|
|
| 25 |
|
| 26 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
| 27 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|