File size: 8,928 Bytes
44c667f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import numpy
import pandas
import joblib
import optuna
import tsfresh
import sklearn
import seaborn
import lightgbm
import matplotlib
from google.colab import drive
def EDA(file):
pandas.set_option('display.max_columns', 200)
target_col = 'target'
print("Shape from file: ", file.shape)
# display(file.head())
# print(file.dtypes)
def PipelineCreation(file, target_col):
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
id_cols = [c for c in ['id', 'time', 'index'] if c in file.columns]
x = file.drop(columns=[target_col] + id_cols, errors='ignore')
y = file[target_col]
numeric_features = x.select_dtypes(include=['number']).columns.tolist()
categorical_features = x.select_dtypes(include=['object', 'category', 'bool']).columns.tolist()
# print("Numeric: ", len(numeric_features))
# print("Categorical: ", len(categorical_features))
# print("X: ", x)
# print("Y: ", y)
numeric_transformer = Pipeline([('imputer', SimpleImputer(strategy='median')),])
#categorical_transformer = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')),
# ('ohe', OneHotEncoder(handle_unknown='ignore')),])
categorical_transformer = Pipeline([
('imputer', SimpleImputer(strategy='most_frequent')),
('ohe', OneHotEncoder(handle_unknown='ignore', sparse_output=False)),
])
print(f"Num:{len(numeric_features)}")
preprocessor = ColumnTransformer([
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features),
], remainder='drop')
return x, y, preprocessor
def Training(x_train_clean, y_train, x_val_clean, y_val):
# from lightgbm import LGBMClassifier
# scale_pos_weight = (y_train==0).sum() / max(1, (y_train==1).sum())
# model = LGBMClassifier(
# objective='binary',
# n_estimators=10000,
# learning_rate=0.05,
# num_leaves=31,
# random_state=42,
# scale_pos_weight=scale_pos_weight
# )
# model.fit(
# x_train_tr, y_train,
# eval_set=[(x_val_tr, y_val)],
# eval_metric='auc',
# #my version does not support that method. I need to use callbacks
# #early_stopping_rounds=100,
# #callbacks=[early_stopping(100), log_evaluation(100)]
# )
# print("Best iteration:", model.best_iteration_)
# print("Train AUC:", model.best_score_['training']['auc'])
# print("Valid AUC:", model.best_score_['valid_0']['auc'])
from lightgbm import LGBMClassifier
# model = LGBMClassifier(
# objective='binary',
# n_estimators=2000,
# learning_rate=0.05,
# num_leaves=31,
# min_child_samples=1,
# random_state=42
# )
model = LGBMClassifier(
objective='binary',
n_estimators=2000,
learning_rate=0.05,
num_leaves=31,
min_child_samples=1,
min_split_gain=0.0, # permite splits mesmo sem ganho positivo aparente
min_data_in_leaf=1, # remove restrição mínima
random_state=42
)
model.fit(
x_train_clean, y_train,
eval_set=[(x_val_clean, y_val)],
eval_metric='auc',
)
print("Best iteration:", model.best_iteration_)
return model
from sklearn.model_selection import train_test_split
if os.path.exists('/content/drive') == 0:
drive.mount('/content/drive')
labels = pandas.read_csv('/content/drive/MyDrive/AI_assets/labels.csv')
light_curves = pandas.read_csv('/content/drive/MyDrive/AI_assets/light_curves.csv')
metadata = pandas.read_csv('/content/drive/MyDrive/AI_assets/metadata.csv')
#data = pandas.read_csv('/content/drive/MyDrive/exoplanets_normalized_data.csv')
data = pandas.read_csv('/content/drive/MyDrive/data.csv')
# im gonna change this under cause i nedd more classes. Using binary interpretation insted of 'CONFIRMED' will help a lot
#x, y, preprocessor = PipelineCreation(data, target_col='kepoi_name')
data['target'] = data['koi_disposition'].map(
lambda v: 1 if v == "CONFIRMED" else 0
)
x, y, preprocessor = PipelineCreation(data, target_col='target')
print("First step done. 1 -> PIPELINE CREATION")
# print("X: ", x)
# print("Y: ", y)
x_train, x_val, y_train, y_val = train_test_split(
x, y, test_size=0.20, stratify=y, random_state=42
)
preprocessor.fit(x_train)
x_train_tr = preprocessor.transform(x_train)
x_val_tr = preprocessor.transform(x_val)
EDA(labels)
#debug purposes
#print("Second step done. 2 -> EDA DONE")
#print("X_train shape:", x_train_tr.shape)
#print("X_val shape:", x_val_tr.shape)
#print("y_train distribution:\n", y_train.value_counts())
#print("y_val distribution:\n", y_val.value_counts())
#print("Check for NaNs:", x_train_tr.isna().sum().sum(), "in train,", x_val_tr.isna().sum().sum(), "in val")
import pandas as pd
x_train_df = pd.DataFrame(x_train_tr)
x_val_df = pd.DataFrame(x_val_tr)
# Remover colunas sem variância
valid_cols = x_train_df.columns[x_train_df.var() > 0]
x_train_clean = x_train_df[valid_cols]
x_val_clean = x_val_df[valid_cols]
import numpy as np
import pandas as pd
# X_train é seu conjunto de treino (DataFrame)
variancias = x_train_df.var()
sem_variancia = (variancias == 0).sum()
# print(f"Número de colunas com variância zero: {sem_variancia}/{len(variancias)}")
# print("Exemplo de variâncias não nulas:")
# print(variancias[variancias > 0].head())
# print("Número de colunas após filtragem:", len(valid_cols))
# print("Shape final de treino:", x_train_clean.shape)
# print("Distribuição de classes:")
# print(y_train.value_counts(normalize=True))
# print("Exemplo de valores:")
# print(x_train_clean.head())
# print("Tipo de dados:", x_train_clean.dtypes.unique())
# print("Faixa de valores nas primeiras colunas:")
# print(x_train_clean.iloc[:, :5].describe())
# import numpy as np
# print("Min:", np.min(x_train_clean.values))
# print("Max:", np.max(x_train_clean.values))
# print("Mean:", np.mean(x_train_clean.values))
# print("Std:", np.std(x_train_clean.values))
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import VarianceThreshold
from lightgbm import LGBMClassifier
# === 1. Remover colunas quase constantes ===
var_sel = VarianceThreshold(threshold=1e-4)
x_train_filtered = var_sel.fit_transform(x_train_clean)
x_val_filtered = var_sel.transform(x_val_clean)
#print("Shape após VarianceThreshold:", x_train_filtered.shape)
# === 2. Padronizar ===
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train_filtered)
x_val_scaled = scaler.transform(x_val_filtered)
# === 3. Treinar modelo ===
# model = LGBMClassifier(
# objective='binary',
# n_estimators=2000,
# learning_rate=0.05,
# num_leaves=31,
# random_state=42
# )
# model.fit(
# x_train_scaled, y_train,
# eval_set=[(x_val_scaled, y_val)],
# eval_metric='auc'
# )
# print("Best iteration:", model.best_iteration_)
#model = Training(x_train_clean, y_train, x_val_clean, y_val)
#print("Finished Training. 3!!")
# import numpy as np
# import pandas as pd
# # Converter se ainda estiver em numpy array
# x_train_df = pd.DataFrame(x_train_clean)
# # 1️⃣ Correlação média entre cada feature e o target
# corrs = []
# for col in x_train_df.columns:
# try:
# corrs.append(abs(np.corrcoef(x_train_df[col], y_train)[0,1]))
# except:
# corrs.append(0)
# mean_corr = np.nanmean(corrs)
# print("Correlação média com o target:", mean_corr)
# # 2️⃣ Contar quantas colunas têm correlação > 0.05
# useful = np.sum(np.array(corrs) > 0.05)
# print("Features com correlação > 0.05:", useful, "/", len(corrs))
# A litle degub made by GPT
# print("Best iteration:", model.best_iteration_)
# print("Train AUC:", model.best_score_['training']['auc'])
# print("Valid AUC:", model.best_score_['valid_0']['auc'])
import numpy as np
if hasattr(x_train_clean, "todense"):
x_train_clean = np.array(x_train_clean.todense(), dtype=np.float32)
x_val_clean = np.array(x_val_clean.todense(), dtype=np.float32)
else:
x_train_clean = np.array(x_train_clean, dtype=np.float32)
x_val_clean = np.array(x_val_clean, dtype=np.float32)
print("Treino - tipo:", type(x_train_clean))
print("Treino - shape:", x_train_clean.shape)
print("Treino - dtype:", x_train_clean.dtype)
print("Valores únicos de y:", np.unique(y_train, return_counts=True))
#model = Training(x_train_clean, y_train, x_val_clean, y_val)
from lightgbm import LGBMClassifier
model = LGBMClassifier(
objective='binary',
learning_rate=0.01,
n_estimators=2000,
random_state=42
)
model.fit(x_train_clean, y_train)
train_score = model.score(x_train_clean, y_train)
print("Treino score:", train_score)
from sklearn.metrics import accuracy_score
y_pred = model.predict(x_val_clean)
acc = accuracy_score(y_val, y_pred)
print(f"Acurácia: {acc:.4f}")
|