Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,181 Bytes
ab143a4 689a7ec ab143a4 9440786 ab143a4 689a7ec ab143a4 49d8b2a 689a7ec ab143a4 fe53c45 ab143a4 9440786 ab143a4 5d028ea 60e528f 49d8b2a ab143a4 689a7ec c618a7d 689a7ec ab143a4 210fca9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
import os
# PyTorch 2.8 (temporary hack)
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
# --- 1. Model Download and Setup (Diffusers Backend) ---
try:
import spaces
except:
class spaces():
def GPU(*args, **kwargs):
def decorator(function):
return lambda *dummy_args, **dummy_kwargs: function(*dummy_args, **dummy_kwargs)
return decorator
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import imageio_ffmpeg
import tempfile
import shutil
import subprocess
import time
from datetime import datetime
import numpy as np
from PIL import Image
import random
import math
import gc
from gradio_client import Client, handle_file # Import for API call
# Import the optimization function from the separate file
from optimization import optimize_pipeline_
# --- Constants and Model Loading ---
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
# --- NEW: Flexible Dimension Constants ---
MAX_DIMENSION = 832
MIN_DIMENSION = 480
DIMENSION_MULTIPLE = 16
SQUARE_SIZE = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS, 1)
input_image_debug_value = [None]
end_image_debug_value = [None]
prompt_debug_value = [None]
total_second_length_debug_value = [None]
factor_debug_value = [None]
allocation_time_debug_value = [None]
default_negative_prompt = "Vibrant colors, overexposure, static, blurred details, subtitles, error, style, artwork, painting, image, still, overall gray, worst quality, low quality, JPEG compression residue, ugly, mutilated, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, malformed limbs, fused fingers, still image, cluttered background, three legs, many people in the background, walking backwards, overexposure, jumpcut, crossfader, "
transformer = WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
)
transformer_2 = WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
transformer = transformer,
transformer_2 = transformer_2,
torch_dtype=torch.bfloat16,
)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, shift=8.0)
pipe.to('cuda')
for i in range(3):
gc.collect()
torch.cuda.synchronize()
torch.cuda.empty_cache()
optimize_pipeline_(pipe,
image=Image.new('RGB', (MAX_DIMENSION, MIN_DIMENSION)),
prompt='prompt',
height=MIN_DIMENSION,
width=MAX_DIMENSION,
num_frames=MAX_FRAMES_MODEL,
)
# 20250508 pftq: for saving prompt to mp4 metadata comments
def set_mp4_comments_imageio_ffmpeg(input_file, comments):
try:
# Get the path to the bundled FFmpeg binary from imageio-ffmpeg
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
# Check if input file exists
if not os.path.exists(input_file):
#print(f"Error: Input file {input_file} does not exist")
return False
# Create a temporary file path
temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
# FFmpeg command using the bundled binary
command = [
ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
'-i', input_file, # input file
'-metadata', f'comment={comments}', # set comment metadata
'-c:v', 'copy', # copy video stream without re-encoding
'-c:a', 'copy', # copy audio stream without re-encoding
'-y', # overwrite output file if it exists
temp_file # temporary output file
]
# Run the FFmpeg command
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode == 0:
# Replace the original file with the modified one
shutil.move(temp_file, input_file)
#print(f"Successfully added comments to {input_file}")
return True
else:
# Clean up temp file if FFmpeg fails
if os.path.exists(temp_file):
os.remove(temp_file)
#print(f"Error: FFmpeg failed with message:\n{result.stderr}")
return False
except Exception as e:
# Clean up temp file in case of other errors
if 'temp_file' in locals() and os.path.exists(temp_file):
os.remove(temp_file)
print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
return False
# --- 2. Image Processing and Application Logic ---
def generate_end_frame(start_img, gen_prompt, progress=gr.Progress(track_tqdm=True)):
"""Calls an external Gradio API to generate an image."""
if start_img is None:
raise gr.Error("Please provide a Start Frame first.")
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise gr.Error("HF_TOKEN not found in environment variables. Please set it in your Space secrets.")
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
start_img.save(tmpfile.name)
tmp_path = tmpfile.name
progress(0.1, desc="Connecting to image generation API...")
client = Client("multimodalart/nano-banana-private")
progress(0.5, desc=f"Generating with prompt: '{gen_prompt}'...")
try:
result = client.predict(
prompt=gen_prompt,
images=[
{"image": handle_file(tmp_path)}
],
manual_token=hf_token,
api_name="/unified_image_generator"
)
finally:
os.remove(tmp_path)
progress(1.0, desc="Done!")
print(result)
return result
def switch_to_upload_tab():
"""Returns a gr.Tabs update to switch to the first tab."""
return gr.Tabs(selected="upload_tab")
def process_image_for_video(image: Image.Image) -> Image.Image:
"""
Resizes an image based on the following rules for video generation:
1. The longest side will be scaled down to MAX_DIMENSION if it's larger.
2. The shortest side will be scaled up to MIN_DIMENSION if it's smaller.
3. The final dimensions will be rounded to the nearest multiple of DIMENSION_MULTIPLE.
4. Square images are resized to a fixed SQUARE_SIZE.
The aspect ratio is preserved as closely as possible.
"""
width, height = image.size
# Rule 4: Handle square images
if width == height:
return image.resize((SQUARE_SIZE, SQUARE_SIZE), Image.Resampling.LANCZOS)
# Determine target dimensions while preserving aspect ratio
aspect_ratio = width / height
new_width, new_height = width, height
# Rule 1: Scale down if too large
if new_width > MAX_DIMENSION or new_height > MAX_DIMENSION:
if aspect_ratio > 1: # Landscape
scale = MAX_DIMENSION / new_width
else: # Portrait
scale = MAX_DIMENSION / new_height
new_width *= scale
new_height *= scale
# Rule 2: Scale up if too small
if new_width < MIN_DIMENSION or new_height < MIN_DIMENSION:
if aspect_ratio > 1: # Landscape
scale = MIN_DIMENSION / new_height
else: # Portrait
scale = MIN_DIMENSION / new_width
new_width *= scale
new_height *= scale
# Rule 3: Round to the nearest multiple of DIMENSION_MULTIPLE
final_width = int(round(new_width / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
final_height = int(round(new_height / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
# Ensure final dimensions are at least the minimum
final_width = max(final_width, MIN_DIMENSION if aspect_ratio < 1 else SQUARE_SIZE)
final_height = max(final_height, MIN_DIMENSION if aspect_ratio > 1 else SQUARE_SIZE)
return image.resize((final_width, final_height), Image.Resampling.LANCZOS)
def resize_and_crop_to_match(target_image, reference_image):
"""Resizes and center-crops the target image to match the reference image's dimensions."""
ref_width, ref_height = reference_image.size
target_width, target_height = target_image.size
scale = max(ref_width / target_width, ref_height / target_height)
new_width, new_height = int(target_width * scale), int(target_height * scale)
resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
return resized.crop((left, top, left + ref_width, top + ref_height))
def init_view():
return gr.update(interactive = True)
def output_video_change(output_video):
print('Log output: ' + str(output_video))
return [gr.update(visible = True)] * 2
def generate_video(
start_image_pil,
end_image_pil,
prompt,
negative_prompt=default_negative_prompt,
duration_seconds=2.1,
steps=8,
guidance_scale=1,
guidance_scale_2=1,
seed=42,
randomize_seed=True,
progress=gr.Progress(track_tqdm=True)
):
start = time.time()
allocation_time = 120
factor = 1
if input_image_debug_value[0] is not None or end_image_debug_value[0] is not None or prompt_debug_value[0] is not None or total_second_length_debug_value[0] is not None or allocation_time_debug_value[0] is not None or factor_debug_value[0] is not None:
start_image_pil = input_image_debug_value[0]
end_image_pil = end_image_debug_value[0]
prompt = prompt_debug_value[0]
duration_seconds = total_second_length_debug_value[0]
allocation_time = min(allocation_time_debug_value[0], 60 * 12)
factor = factor_debug_value[0]
if start_image_pil is None or end_image_pil is None:
raise gr.Error("Please upload both a start and an end image.")
# Step 1: Process the start image to get our target dimensions based on the new rules.
processed_start_image = process_image_for_video(start_image_pil)
# Step 2: Make the end image match the *exact* dimensions of the processed start image.
processed_end_image = resize_and_crop_to_match(end_image_pil, processed_start_image)
target_height, target_width = processed_start_image.height, processed_start_image.width
# Handle seed and frame count
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
progress(0.2, desc=f"Generating {num_frames} frames at {target_width}x{target_height} (seed: {current_seed})...")
progress(0.1, desc="Preprocessing images...")
print("Generate a video with the prompt: " + prompt)
output_frames_list = None
caught_error = None
while factor > 0 and int(allocation_time) > 0:
try:
output_frames_list = generate_video_on_gpu(
start_image_pil,
end_image_pil,
prompt,
negative_prompt,
duration_seconds,
steps,
guidance_scale,
guidance_scale_2,
seed,
randomize_seed,
progress,
allocation_time,
factor,
target_height,
target_width,
current_seed,
num_frames,
processed_start_image,
processed_end_image
)
factor = 0
caught_error = None
except BaseException as err:
print("An exception occurred: " + str(err))
caught_error = err
factor = 0
allocation_time = int(allocation_time) - 1
except:
caught_error = None
factor = 0
allocation_time = int(allocation_time) - 1
if caught_error is not None:
raise caught_error
progress(0.9, desc="Encoding and saving video...")
video_path = 'wan_' + datetime.now().strftime("%Y-%m-%d_%H-%M-%S.%f") + '.mp4'
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
set_mp4_comments_imageio_ffmpeg(video_path, f"Prompt: {prompt} | Negative Prompt: {negative_prompt}");
print("Video exported: " + video_path)
progress(1.0, desc="Done!")
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
"The video been generated in " + \
((str(hours) + " h, ") if hours != 0 else "") + \
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
str(secondes) + " sec. " + \
"The video resolution is " + str(target_width) + \
" pixels large and " + str(target_height) + \
" pixels high, so a resolution of " + f'{target_width * target_height:,}' + " pixels." + \
" Your prompt is saved into the metadata of the video."
return [video_path, gr.update(value = video_path, visible = True), current_seed, gr.update(value = information, visible = True), gr.update(interactive = False)]
def get_duration(
start_image_pil,
end_image_pil,
prompt,
negative_prompt,
duration_seconds,
steps,
guidance_scale,
guidance_scale_2,
seed,
randomize_seed,
progress,
allocation_time,
factor,
target_height,
target_width,
current_seed,
num_frames,
processed_start_image,
processed_end_image
):
return allocation_time
@spaces.GPU(duration=get_duration)
def generate_video_on_gpu(
start_image_pil,
end_image_pil,
prompt,
negative_prompt,
duration_seconds,
steps,
guidance_scale,
guidance_scale_2,
seed,
randomize_seed,
progress,
allocation_time,
factor,
target_height,
target_width,
current_seed,
num_frames,
processed_start_image,
processed_end_image
):
"""
Generates a video by interpolating between a start and end image, guided by a text prompt,
using the diffusers Wan2.2 pipeline.
"""
output_frames_list = pipe(
image=processed_start_image,
last_image=processed_end_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_height,
width=target_width,
num_frames=int(num_frames * factor),
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
return output_frames_list
# --- 3. Gradio User Interface ---
js = """
function createGradioAnimation() {
window.addEventListener("beforeunload", function(e) {
if (document.getElementById('dummy_button_id') && !document.getElementById('dummy_button_id').disabled) {
var confirmationMessage = 'A process is still running. '
+ 'If you leave before saving, your changes will be lost.';
(e || window.event).returnValue = confirmationMessage;
}
return confirmationMessage;
});
return 'Animation created';
}
"""
# Gradio interface
with gr.Blocks(js=js) as app:
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
gr.Markdown("Based on the [Wan 2.2 First/Last Frame workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/), applied to 🧨 Diffusers + [lightx2v/Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 8-step LoRA")
with gr.Row(elem_id="general_items"):
with gr.Column():
with gr.Group(elem_id="group_all"):
with gr.Row():
start_image = gr.Image(type="pil", label="Start Frame", sources=["upload", "clipboard"])
# Capture the Tabs component in a variable and assign IDs to tabs
with gr.Tabs(elem_id="group_tabs") as tabs:
with gr.TabItem("Upload", id="upload_tab"):
end_image = gr.Image(type="pil", label="End Frame", sources=["upload", "clipboard"])
with gr.TabItem("Generate", id="generate_tab"):
generate_5seconds = gr.Button("Generate scene 5 seconds in the future", elem_id="fivesec")
gr.Markdown("Generate a custom end-frame with an edit model like [Nano Banana](https://huggingface.co/spaces/multimodalart/nano-banana) or [Qwen Image Edit](https://huggingface.co/spaces/multimodalart/Qwen-Image-Edit-Fast)", elem_id="or_item")
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
with gr.Accordion("Advanced Settings", open=False):
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=2.1, label="Video Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=8, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale - high noise")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale - low noise")
with gr.Row():
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
generate_button = gr.Button("Generate Video", variant="primary")
dummy_button = gr.Button(elem_id = "dummy_button_id", visible = False, interactive = False)
with gr.Column():
output_video = gr.Video(label="Generated Video", autoplay = True, loop = True)
download_button = gr.DownloadButton(label="Download", visible = False)
video_information = gr.HTML(value = "", visible = False)
# Main video generation button
ui_inputs = [
start_image,
end_image,
prompt,
negative_prompt_input,
duration_seconds_input,
steps_slider,
guidance_scale_input,
guidance_scale_2_input,
seed_input,
randomize_seed_checkbox
]
ui_outputs = [output_video, download_button, seed_input, video_information, dummy_button]
generate_button.click(fn = init_view, inputs = [], outputs = [dummy_button], queue = False, show_progress = False).success(
fn = generate_video,
inputs = ui_inputs,
outputs = ui_outputs
)
generate_5seconds.click(
fn=switch_to_upload_tab,
inputs=None,
outputs=[tabs]
).then(
fn=lambda img: generate_end_frame(img, "this image is a still frame from a movie. generate a new frame with what happens on this scene 5 seconds in the future"),
inputs=[start_image],
outputs=[end_image]
).success(
fn=generate_video,
inputs=ui_inputs,
outputs=ui_outputs
)
output_video.change(
fn=output_video_change,
inputs=[output_video],
outputs=[download_button, video_information]
)
with gr.Row(visible=False):
prompt_debug=gr.Textbox(label="Prompt Debug")
input_image_debug=gr.Image(type="pil", label="Image Debug")
end_image_debug=gr.Image(type="pil", label="End Image Debug")
total_second_length_debug=gr.Slider(label="Duration Debug", minimum=1, maximum=120, value=5, step=0.1)
factor_debug=gr.Slider(label="Factor Debug", minimum=1, maximum=100, value=3.2, step=0.1)
allocation_time_debug=gr.Slider(label="Allocation Debug", minimum=1, maximum=1200, value=660, step=1)
information_debug = gr.HTML(value = "")
gr.Examples(
examples=[["Schoolboy_without_backpack.webp", "Schoolboy_with_backpack.webp", "The schoolboy puts on his schoolbag."]],
inputs=[start_image, end_image, prompt],
outputs=ui_outputs,
fn=generate_video,
run_on_click=True,
cache_examples=True,
cache_mode='lazy',
)
def handle_field_debug_change(
input_image_debug_data,
end_image_debug_data,
prompt_debug_data,
total_second_length_debug_data,
factor_debug_data,
allocation_time_debug_data
):
input_image_debug_value[0] = input_image_debug_data
end_image_debug_value[0] = end_image_debug_data
prompt_debug_value[0] = prompt_debug_data
total_second_length_debug_value[0] = total_second_length_debug_data
factor_debug_value[0] = factor_debug_data
allocation_time_debug_value[0] = allocation_time_debug_data
return []
inputs_debug=[input_image_debug, end_image_debug, prompt_debug, total_second_length_debug, factor_debug, allocation_time_debug]
input_image_debug.upload(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
end_image_debug.upload(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
prompt_debug.change(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
total_second_length_debug.change(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
factor_debug.change(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
allocation_time_debug.change(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
gr.Examples(
label = "Examples from demo",
examples = [
["poli_tower.png", "tower_takes_off.png", "The man turns around."],
["ugly_sonic.jpeg", "squatting_sonic.png", "पात्रं क्षेपणास्त्रं चकमाति।"],
["Schoolboy_without_backpack.webp", "Schoolboy_with_backpack.webp", "The schoolboy puts on his schoolbag."],
],
inputs = [start_image, end_image, prompt],
outputs = ui_outputs,
fn = generate_video,
cache_examples = False,
)
if __name__ == "__main__":
app.launch(mcp_server=True, share=True) |