File size: 23,181 Bytes
ab143a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689a7ec
ab143a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9440786
ab143a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689a7ec
ab143a4
 
 
 
49d8b2a
689a7ec
ab143a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe53c45
 
ab143a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9440786
ab143a4
 
 
 
 
 
5d028ea
60e528f
49d8b2a
ab143a4
 
 
 
 
 
 
 
 
 
689a7ec
 
 
 
 
 
c618a7d
689a7ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab143a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210fca9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import os
# PyTorch 2.8 (temporary hack)
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')

# --- 1. Model Download and Setup (Diffusers Backend) ---
try:
    import spaces
except:
    class spaces():
        def GPU(*args, **kwargs):
            def decorator(function):
                return lambda *dummy_args, **dummy_kwargs: function(*dummy_args, **dummy_kwargs)
            return decorator

import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import imageio_ffmpeg
import tempfile
import shutil
import subprocess
import time
from datetime import datetime
import numpy as np
from PIL import Image
import random
import math
import gc
from gradio_client import Client, handle_file # Import for API call

# Import the optimization function from the separate file
from optimization import optimize_pipeline_

# --- Constants and Model Loading ---
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"

# --- NEW: Flexible Dimension Constants ---
MAX_DIMENSION = 832
MIN_DIMENSION = 480
DIMENSION_MULTIPLE = 16
SQUARE_SIZE = 480

MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81

MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS, 1)

input_image_debug_value = [None]
end_image_debug_value = [None]
prompt_debug_value = [None]
total_second_length_debug_value = [None]
factor_debug_value = [None]
allocation_time_debug_value = [None]

default_negative_prompt = "Vibrant colors, overexposure, static, blurred details, subtitles, error, style, artwork, painting, image, still, overall gray, worst quality, low quality, JPEG compression residue, ugly, mutilated, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, malformed limbs, fused fingers, still image, cluttered background, three legs, many people in the background, walking backwards, overexposure, jumpcut, crossfader, "

transformer = WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    )

transformer_2 = WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
        subfolder='transformer_2',
        torch_dtype=torch.bfloat16,
        device_map='cuda',
    )

pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID,
    transformer = transformer,
    transformer_2 = transformer_2,
    torch_dtype=torch.bfloat16,
)
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, shift=8.0)
pipe.to('cuda')

for i in range(3):
    gc.collect()
    torch.cuda.synchronize()
    torch.cuda.empty_cache()

optimize_pipeline_(pipe,
    image=Image.new('RGB', (MAX_DIMENSION, MIN_DIMENSION)), 
    prompt='prompt',
    height=MIN_DIMENSION,
    width=MAX_DIMENSION,
    num_frames=MAX_FRAMES_MODEL,
)

# 20250508 pftq: for saving prompt to mp4 metadata comments
def set_mp4_comments_imageio_ffmpeg(input_file, comments):
    try:
        # Get the path to the bundled FFmpeg binary from imageio-ffmpeg
        ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()

        # Check if input file exists
        if not os.path.exists(input_file):
            #print(f"Error: Input file {input_file} does not exist")
            return False

        # Create a temporary file path
        temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name

        # FFmpeg command using the bundled binary
        command = [
            ffmpeg_path,                   # Use imageio-ffmpeg's FFmpeg
            '-i', input_file,              # input file
            '-metadata', f'comment={comments}',  # set comment metadata
            '-c:v', 'copy',                # copy video stream without re-encoding
            '-c:a', 'copy',                # copy audio stream without re-encoding
            '-y',                          # overwrite output file if it exists
            temp_file                      # temporary output file
        ]

        # Run the FFmpeg command
        result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)

        if result.returncode == 0:
            # Replace the original file with the modified one
            shutil.move(temp_file, input_file)
            #print(f"Successfully added comments to {input_file}")
            return True
        else:
            # Clean up temp file if FFmpeg fails
            if os.path.exists(temp_file):
                os.remove(temp_file)
            #print(f"Error: FFmpeg failed with message:\n{result.stderr}")
            return False

    except Exception as e:
        # Clean up temp file in case of other errors
        if 'temp_file' in locals() and os.path.exists(temp_file):
            os.remove(temp_file)
        print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
        return False


# --- 2. Image Processing and Application Logic ---
def generate_end_frame(start_img, gen_prompt, progress=gr.Progress(track_tqdm=True)):
    """Calls an external Gradio API to generate an image."""
    if start_img is None:
        raise gr.Error("Please provide a Start Frame first.")

    hf_token = os.getenv("HF_TOKEN")
    if not hf_token:
        raise gr.Error("HF_TOKEN not found in environment variables. Please set it in your Space secrets.")

    with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
        start_img.save(tmpfile.name)
        tmp_path = tmpfile.name

    progress(0.1, desc="Connecting to image generation API...")
    client = Client("multimodalart/nano-banana-private")
    
    progress(0.5, desc=f"Generating with prompt: '{gen_prompt}'...")
    try:
        result = client.predict(
            prompt=gen_prompt, 
            images=[
                {"image": handle_file(tmp_path)}
            ],
            manual_token=hf_token,
            api_name="/unified_image_generator"
        )
    finally:
        os.remove(tmp_path)

    progress(1.0, desc="Done!")
    print(result)
    return result

def switch_to_upload_tab():
    """Returns a gr.Tabs update to switch to the first tab."""
    return gr.Tabs(selected="upload_tab")


def process_image_for_video(image: Image.Image) -> Image.Image:
    """
    Resizes an image based on the following rules for video generation:
    1. The longest side will be scaled down to MAX_DIMENSION if it's larger.
    2. The shortest side will be scaled up to MIN_DIMENSION if it's smaller.
    3. The final dimensions will be rounded to the nearest multiple of DIMENSION_MULTIPLE.
    4. Square images are resized to a fixed SQUARE_SIZE.
    The aspect ratio is preserved as closely as possible.
    """
    width, height = image.size

    # Rule 4: Handle square images
    if width == height:
        return image.resize((SQUARE_SIZE, SQUARE_SIZE), Image.Resampling.LANCZOS)

    # Determine target dimensions while preserving aspect ratio
    aspect_ratio = width / height
    new_width, new_height = width, height

    # Rule 1: Scale down if too large
    if new_width > MAX_DIMENSION or new_height > MAX_DIMENSION:
        if aspect_ratio > 1:  # Landscape
            scale = MAX_DIMENSION / new_width
        else:  # Portrait
            scale = MAX_DIMENSION / new_height
        new_width *= scale
        new_height *= scale

    # Rule 2: Scale up if too small
    if new_width < MIN_DIMENSION or new_height < MIN_DIMENSION:
        if aspect_ratio > 1:  # Landscape
            scale = MIN_DIMENSION / new_height
        else:  # Portrait
            scale = MIN_DIMENSION / new_width
        new_width *= scale
        new_height *= scale

    # Rule 3: Round to the nearest multiple of DIMENSION_MULTIPLE
    final_width = int(round(new_width / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
    final_height = int(round(new_height / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
    
    # Ensure final dimensions are at least the minimum
    final_width = max(final_width, MIN_DIMENSION if aspect_ratio < 1 else SQUARE_SIZE)
    final_height = max(final_height, MIN_DIMENSION if aspect_ratio > 1 else SQUARE_SIZE)


    return image.resize((final_width, final_height), Image.Resampling.LANCZOS)

def resize_and_crop_to_match(target_image, reference_image):
    """Resizes and center-crops the target image to match the reference image's dimensions."""
    ref_width, ref_height = reference_image.size
    target_width, target_height = target_image.size
    scale = max(ref_width / target_width, ref_height / target_height)
    new_width, new_height = int(target_width * scale), int(target_height * scale)
    resized = target_image.resize((new_width, new_height), Image.Resampling.LANCZOS)
    left, top = (new_width - ref_width) // 2, (new_height - ref_height) // 2
    return resized.crop((left, top, left + ref_width, top + ref_height))

def init_view():
    return gr.update(interactive = True)

def output_video_change(output_video):
    print('Log output: ' + str(output_video))
    return [gr.update(visible = True)] * 2

def generate_video(
    start_image_pil,
    end_image_pil,
    prompt,
    negative_prompt=default_negative_prompt,
    duration_seconds=2.1,
    steps=8,
    guidance_scale=1,
    guidance_scale_2=1,
    seed=42,
    randomize_seed=True,
    progress=gr.Progress(track_tqdm=True)
):
    start = time.time()
    allocation_time = 120
    factor = 1
    
    if input_image_debug_value[0] is not None or end_image_debug_value[0] is not None or prompt_debug_value[0] is not None or total_second_length_debug_value[0] is not None or allocation_time_debug_value[0] is not None or factor_debug_value[0] is not None:
        start_image_pil = input_image_debug_value[0]
        end_image_pil = end_image_debug_value[0]
        prompt = prompt_debug_value[0]
        duration_seconds = total_second_length_debug_value[0]
        allocation_time = min(allocation_time_debug_value[0], 60 * 12)
        factor = factor_debug_value[0]

    if start_image_pil is None or end_image_pil is None:
        raise gr.Error("Please upload both a start and an end image.")

    # Step 1: Process the start image to get our target dimensions based on the new rules.
    processed_start_image = process_image_for_video(start_image_pil)
    
    # Step 2: Make the end image match the *exact* dimensions of the processed start image.
    processed_end_image = resize_and_crop_to_match(end_image_pil, processed_start_image)
    
    target_height, target_width = processed_start_image.height, processed_start_image.width

    # Handle seed and frame count
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    progress(0.2, desc=f"Generating {num_frames} frames at {target_width}x{target_height} (seed: {current_seed})...")

    progress(0.1, desc="Preprocessing images...")
    print("Generate a video with the prompt: " + prompt)
    output_frames_list = None
    caught_error = None
    while factor > 0 and int(allocation_time) > 0:
        try:
            output_frames_list = generate_video_on_gpu(
                start_image_pil,
                end_image_pil,
                prompt,
                negative_prompt,
                duration_seconds,
                steps,
                guidance_scale,
                guidance_scale_2,
                seed,
                randomize_seed,
                progress,
                allocation_time,
                factor,
                target_height,
                target_width,
                current_seed,
                num_frames,
                processed_start_image,
                processed_end_image
            )
            factor = 0
            caught_error = None
        except BaseException as err:
            print("An exception occurred: " + str(err))
            caught_error = err
            factor = 0
            allocation_time = int(allocation_time) - 1
        except:
            caught_error = None
            factor = 0
            allocation_time = int(allocation_time) - 1

    if caught_error is not None:
        raise caught_error

    progress(0.9, desc="Encoding and saving video...")
    
    video_path = 'wan_' + datetime.now().strftime("%Y-%m-%d_%H-%M-%S.%f") + '.mp4'

    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    set_mp4_comments_imageio_ffmpeg(video_path, f"Prompt: {prompt} | Negative Prompt: {negative_prompt}");
    print("Video exported: " + video_path)
    
    progress(1.0, desc="Done!")
    end = time.time()
    secondes = int(end - start)
    minutes = math.floor(secondes / 60)
    secondes = secondes - (minutes * 60)
    hours = math.floor(minutes / 60)
    minutes = minutes - (hours * 60)
    information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
    "The video been generated in " + \
    ((str(hours) + " h, ") if hours != 0 else "") + \
    ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
    str(secondes) + " sec. " + \
    "The video resolution is " + str(target_width) + \
    " pixels large and " + str(target_height) + \
    " pixels high, so a resolution of " + f'{target_width * target_height:,}' + " pixels." + \
    " Your prompt is saved into the metadata of the video."
    return [video_path, gr.update(value = video_path, visible = True), current_seed, gr.update(value = information, visible = True), gr.update(interactive = False)]

def get_duration(
    start_image_pil,
    end_image_pil,
    prompt,
    negative_prompt,
    duration_seconds,
    steps,
    guidance_scale,
    guidance_scale_2,
    seed,
    randomize_seed,
    progress,
    allocation_time,
    factor,
    target_height,
    target_width,
    current_seed,
    num_frames,
    processed_start_image,
    processed_end_image
):
    return allocation_time

@spaces.GPU(duration=get_duration)
def generate_video_on_gpu(
    start_image_pil,
    end_image_pil,
    prompt,
    negative_prompt,
    duration_seconds,
    steps,
    guidance_scale,
    guidance_scale_2,
    seed,
    randomize_seed,
    progress,
    allocation_time,
    factor,
    target_height,
    target_width,
    current_seed,
    num_frames,
    processed_start_image,
    processed_end_image
):
    """
    Generates a video by interpolating between a start and end image, guided by a text prompt,
    using the diffusers Wan2.2 pipeline.
    """

    output_frames_list = pipe(
        image=processed_start_image,
        last_image=processed_end_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=target_height,
        width=target_width,
        num_frames=int(num_frames * factor),
        guidance_scale=float(guidance_scale),
        guidance_scale_2=float(guidance_scale_2),
        num_inference_steps=int(steps),
        generator=torch.Generator(device="cuda").manual_seed(current_seed),
    ).frames[0]

    return output_frames_list


# --- 3. Gradio User Interface ---



js = """
function createGradioAnimation() {
    window.addEventListener("beforeunload", function(e) {
        if (document.getElementById('dummy_button_id') && !document.getElementById('dummy_button_id').disabled) {
            var confirmationMessage = 'A process is still running. '
                                    + 'If you leave before saving, your changes will be lost.';
    
            (e || window.event).returnValue = confirmationMessage;
        }
        return confirmationMessage;
    });
    return 'Animation created';
}
"""

# Gradio interface
with gr.Blocks(js=js) as app:
    gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
    gr.Markdown("Based on the [Wan 2.2 First/Last Frame workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/), applied to 🧨 Diffusers + [lightx2v/Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 8-step LoRA")

    with gr.Row(elem_id="general_items"):
        with gr.Column():
            with gr.Group(elem_id="group_all"):
                with gr.Row():
                    start_image = gr.Image(type="pil", label="Start Frame", sources=["upload", "clipboard"])
                    # Capture the Tabs component in a variable and assign IDs to tabs
                    with gr.Tabs(elem_id="group_tabs") as tabs:
                        with gr.TabItem("Upload", id="upload_tab"):
                            end_image = gr.Image(type="pil", label="End Frame", sources=["upload", "clipboard"])
                        with gr.TabItem("Generate", id="generate_tab"):
                            generate_5seconds = gr.Button("Generate scene 5 seconds in the future", elem_id="fivesec")
                            gr.Markdown("Generate a custom end-frame with an edit model like [Nano Banana](https://huggingface.co/spaces/multimodalart/nano-banana) or [Qwen Image Edit](https://huggingface.co/spaces/multimodalart/Qwen-Image-Edit-Fast)", elem_id="or_item")
                prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")

                with gr.Accordion("Advanced Settings", open=False):
                    duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=2.1, label="Video Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
                    negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                    steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=8, label="Inference Steps")
                    guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale - high noise")
                    guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale - low noise")
                    with gr.Row():
                        seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
                        randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)

                generate_button = gr.Button("Generate Video", variant="primary")
                dummy_button = gr.Button(elem_id = "dummy_button_id", visible = False, interactive = False)

        with gr.Column():
            output_video = gr.Video(label="Generated Video", autoplay = True, loop = True)
            download_button = gr.DownloadButton(label="Download", visible = False)
            video_information = gr.HTML(value = "", visible = False)

    # Main video generation button
    ui_inputs = [
        start_image,
        end_image,
        prompt,
        negative_prompt_input,
        duration_seconds_input,
        steps_slider,
        guidance_scale_input,
        guidance_scale_2_input,
        seed_input,
        randomize_seed_checkbox
    ]
    ui_outputs = [output_video, download_button, seed_input, video_information, dummy_button]

    generate_button.click(fn = init_view, inputs = [], outputs = [dummy_button], queue = False, show_progress = False).success(
        fn = generate_video,
        inputs = ui_inputs,
        outputs = ui_outputs
    )

    generate_5seconds.click(
        fn=switch_to_upload_tab,
        inputs=None,
        outputs=[tabs]
    ).then( 
        fn=lambda img: generate_end_frame(img, "this image is a still frame from a movie. generate a new frame with what happens on this scene 5 seconds in the future"),
        inputs=[start_image],
        outputs=[end_image]
    ).success(
        fn=generate_video,
        inputs=ui_inputs,
        outputs=ui_outputs
    )
    
    output_video.change(
        fn=output_video_change,
        inputs=[output_video],
        outputs=[download_button, video_information]
    )
    
    with gr.Row(visible=False):
        prompt_debug=gr.Textbox(label="Prompt Debug")
        input_image_debug=gr.Image(type="pil", label="Image Debug")
        end_image_debug=gr.Image(type="pil", label="End Image Debug")
        total_second_length_debug=gr.Slider(label="Duration Debug", minimum=1, maximum=120, value=5, step=0.1)
        factor_debug=gr.Slider(label="Factor Debug", minimum=1, maximum=100, value=3.2, step=0.1)
        allocation_time_debug=gr.Slider(label="Allocation Debug", minimum=1, maximum=1200, value=660, step=1)
        information_debug = gr.HTML(value = "")
        gr.Examples(
            examples=[["Schoolboy_without_backpack.webp", "Schoolboy_with_backpack.webp", "The schoolboy puts on his schoolbag."]],
            inputs=[start_image, end_image, prompt],
            outputs=ui_outputs,
            fn=generate_video,
            run_on_click=True,
            cache_examples=True,
            cache_mode='lazy',
        )

    def handle_field_debug_change(
        input_image_debug_data,
        end_image_debug_data,
        prompt_debug_data,
        total_second_length_debug_data,
        factor_debug_data,
        allocation_time_debug_data
    ):
        input_image_debug_value[0] = input_image_debug_data
        end_image_debug_value[0] = end_image_debug_data
        prompt_debug_value[0] = prompt_debug_data
        total_second_length_debug_value[0] = total_second_length_debug_data
        factor_debug_value[0] = factor_debug_data
        allocation_time_debug_value[0] = allocation_time_debug_data
        return []

    inputs_debug=[input_image_debug, end_image_debug, prompt_debug, total_second_length_debug, factor_debug, allocation_time_debug]

    input_image_debug.upload(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
    end_image_debug.upload(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
    prompt_debug.change(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
    total_second_length_debug.change(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
    factor_debug.change(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
    allocation_time_debug.change(fn=handle_field_debug_change, inputs=inputs_debug, outputs=[])
    
    gr.Examples(
        label = "Examples from demo",
        examples = [
            ["poli_tower.png", "tower_takes_off.png", "The man turns around."],
            ["ugly_sonic.jpeg", "squatting_sonic.png", "पात्रं क्षेपणास्त्रं चकमाति।"],
            ["Schoolboy_without_backpack.webp", "Schoolboy_with_backpack.webp", "The schoolboy puts on his schoolbag."],
        ],
        inputs = [start_image, end_image, prompt],
        outputs = ui_outputs,
        fn = generate_video,
        cache_examples = False,
    )

if __name__ == "__main__":
    app.launch(mcp_server=True, share=True)