Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from diffusers import DiffusionPipeline | |
| def generate_image(modelsyu, prompt, negative_prompt): | |
| pipeline = DiffusionPipeline.from_pretrained(modelsyu) | |
| pipeline.to("cpu") | |
| # Attempt to generate an image with the negative prompt if supported | |
| try: | |
| image = pipeline(prompt, negative_prompt=negative_prompt).images[0] | |
| except TypeError: | |
| # Fallback if negative_prompt is not supported | |
| image = pipeline(prompt).images[0] | |
| return image | |
| # Define the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Text to Image Generation Custom Models Demo") | |
| prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter your negative prompt here") | |
| submit_button = gr.Button("Generate Image") | |
| with gr.Accordion('Load your custom models first'): | |
| basem = gr.Textbox(label="Your Lora model", value="John6666/pony-diffusion-v6-xl-sdxl-spo") | |
| output_image = gr.Image(label="Generated Image") | |
| submit_button.click(generate_image, inputs=[basem, prompt, negative_prompt], outputs=output_image) | |
| # Launch the demo | |
| demo.launch() | |