Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- app.py +156 -0
- best_model.pt +3 -0
- input/car.jpg +0 -0
- license-plate-detection-using-yolo.ipynb +0 -0
- model/craft_mlt_25k.pth +3 -0
- model/english_g2.pth +3 -0
- output/car.jpg +0 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import cv2
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
import os
|
| 5 |
+
import easyocr
|
| 6 |
+
from moviepy import ImageSequenceClip
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
st.title("🚗 PlateVision 🔍")
|
| 10 |
+
st.caption("AI-powered license plate detection & recognition from images and videos")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
os.makedirs("input", exist_ok=True)
|
| 14 |
+
os.makedirs("output", exist_ok=True)
|
| 15 |
+
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_yolo_model():
|
| 18 |
+
return YOLO("best_model.pt")
|
| 19 |
+
|
| 20 |
+
@st.cache_resource
|
| 21 |
+
def load_ocr_reader():
|
| 22 |
+
return easyocr.Reader(['en'], model_storage_directory='model')
|
| 23 |
+
|
| 24 |
+
def process_and_find_plate(input_path, output_path):
|
| 25 |
+
extension = os.path.splitext(input_path)[1].lower()
|
| 26 |
+
if extension in ['.mp4', '.mkv']:
|
| 27 |
+
path = find_plate_on_video(input_path, output_path)
|
| 28 |
+
|
| 29 |
+
elif extension in ['.jpg', '.jpeg', '.png']:
|
| 30 |
+
path = find_plate_on_image(input_path, output_path)
|
| 31 |
+
|
| 32 |
+
else:
|
| 33 |
+
st.error("Unsupported file type")
|
| 34 |
+
return None
|
| 35 |
+
|
| 36 |
+
return path
|
| 37 |
+
|
| 38 |
+
def find_plate_on_image(input_path, output_path):
|
| 39 |
+
|
| 40 |
+
model = load_yolo_model()
|
| 41 |
+
reader = load_ocr_reader()
|
| 42 |
+
|
| 43 |
+
image = cv2.imread(input_path)
|
| 44 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 45 |
+
outputs = model.predict(image, verbose=False)
|
| 46 |
+
|
| 47 |
+
for output in outputs:
|
| 48 |
+
for box in output.boxes:
|
| 49 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 50 |
+
confidence = box.conf[0]
|
| 51 |
+
roi = image[y1:y2, x1:x2]
|
| 52 |
+
results = reader.readtext(roi)
|
| 53 |
+
try:
|
| 54 |
+
plate_num = results[0][1].strip()
|
| 55 |
+
except Exception as e:
|
| 56 |
+
plate_num = ""
|
| 57 |
+
|
| 58 |
+
if plate_num == "":
|
| 59 |
+
plate_num = "Not Visible!"
|
| 60 |
+
|
| 61 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
| 62 |
+
cv2.putText(image, f'{confidence*100:.2f}%', (x1, y1-20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2, cv2.LINE_AA)
|
| 63 |
+
cv2.putText(image, f'Number: {plate_num}', (x1, y2+20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2, cv2.LINE_AA)
|
| 64 |
+
|
| 65 |
+
cv2.imwrite(output_path, image)
|
| 66 |
+
return output_path
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def find_plate_on_video(input_path, output_path):
|
| 70 |
+
model = load_yolo_model()
|
| 71 |
+
reader = load_ocr_reader()
|
| 72 |
+
|
| 73 |
+
cap = cv2.VideoCapture(input_path)
|
| 74 |
+
if not cap.isOpened():
|
| 75 |
+
st.error("Error opening the video")
|
| 76 |
+
return None
|
| 77 |
+
|
| 78 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 79 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 80 |
+
frames = []
|
| 81 |
+
frame_idx = 0
|
| 82 |
+
skip_frame = 5
|
| 83 |
+
|
| 84 |
+
progress_bar = st.progress(0, text="🔍 Analyzing video frames...")
|
| 85 |
+
|
| 86 |
+
while cap.isOpened():
|
| 87 |
+
ret, frame = cap.read()
|
| 88 |
+
if not ret:
|
| 89 |
+
break
|
| 90 |
+
|
| 91 |
+
if frame_idx % skip_frame != 0:
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 95 |
+
outputs = model.predict(rgb_frame, verbose=False)
|
| 96 |
+
|
| 97 |
+
for output in outputs:
|
| 98 |
+
for box in output.boxes:
|
| 99 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
| 100 |
+
confidence = box.conf[0]
|
| 101 |
+
roi = frame[y1:y2, x1:x2]
|
| 102 |
+
results = reader.readtext(roi)
|
| 103 |
+
try:
|
| 104 |
+
plate_num = results[0][1].strip()
|
| 105 |
+
except Exception:
|
| 106 |
+
plate_num = ""
|
| 107 |
+
|
| 108 |
+
if plate_num == "":
|
| 109 |
+
plate_num = "Not Visible!"
|
| 110 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
| 111 |
+
cv2.putText(frame, f'{confidence*100:.2f}%', (x1, y1 - 20),
|
| 112 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
| 113 |
+
cv2.putText(frame, f'Number: {plate_num}', (x1, y2 + 20),
|
| 114 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
| 115 |
+
|
| 116 |
+
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 117 |
+
frame_idx += 1
|
| 118 |
+
|
| 119 |
+
# Update progress
|
| 120 |
+
progress = min(frame_idx / total_frames, 1.0)
|
| 121 |
+
progress_bar.progress(progress, text=f"📸 Processed {frame_idx}/{total_frames} frames...")
|
| 122 |
+
|
| 123 |
+
cap.release()
|
| 124 |
+
progress_bar.empty()
|
| 125 |
+
|
| 126 |
+
# Write final video using MoviePy
|
| 127 |
+
clip = ImageSequenceClip(frames, fps=fps // frame_skip if fps >= frame_skip else 1)
|
| 128 |
+
clip.write_videofile(output_path, codec='libx264', audio=False, logger=None)
|
| 129 |
+
|
| 130 |
+
return output_path
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
uploaded_file = st.file_uploader("📤 Upload an image or video", type=['jpg', 'jpeg', 'png', 'mp4', 'mkv'])
|
| 135 |
+
|
| 136 |
+
if uploaded_file is not None:
|
| 137 |
+
input_path = f"input/{uploaded_file.name}"
|
| 138 |
+
output_path = f"output/{uploaded_file.name}"
|
| 139 |
+
with open(input_path, 'wb') as f:
|
| 140 |
+
f.write(uploaded_file.getbuffer())
|
| 141 |
+
with st.spinner("🚦 Detecting plates... please fasten your seatbelt!"):
|
| 142 |
+
path = process_and_find_plate(input_path, output_path)
|
| 143 |
+
|
| 144 |
+
if path.endswith(('.mp4', '.mkv')):
|
| 145 |
+
video_file = open(path, 'rb')
|
| 146 |
+
video_bytes = video_file.read()
|
| 147 |
+
st.video(video_bytes)
|
| 148 |
+
elif path.endswith(('.jpg', '.jpeg', '.png')):
|
| 149 |
+
st.image(path)
|
| 150 |
+
else:
|
| 151 |
+
st.error("Error occured while proccessing the file.")
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
best_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ac0243025d1c33e3a71714baf889304f64100cb53bcd0ee7b368779d102d7c6
|
| 3 |
+
size 6234533
|
input/car.jpg
ADDED
|
license-plate-detection-using-yolo.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model/craft_mlt_25k.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a5efbfb48b4081100544e75e1e2b57f8de3d84f213004b14b85fd4b3748db17
|
| 3 |
+
size 83152330
|
model/english_g2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e2272681d9d67a04e2dff396b6e95077bc19001f8f6d3593c307b9852e1c29e8
|
| 3 |
+
size 15143997
|
output/car.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit == 1.50.0
|
| 2 |
+
opencv-python == 4.12.0.88
|
| 3 |
+
ultralytics == 8.3.221
|
| 4 |
+
easyocr == 1.7.2
|
| 5 |
+
moviepy == 2.2.1
|
| 6 |
+
imageio-ffmpeg == 0.6.0
|