Spaces:
Sleeping
Sleeping
File size: 6,199 Bytes
bdbd514 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import streamlit as st
import faiss
import pickle
import pandas as pd
import sqlite3
from sentence_transformers import SentenceTransformer
import google.generativeai as genai
from langchain_core.runnables import RunnableLambda
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
SAVE_DIR = "vector_store"
DATASET_DIR = "datasets"
GOOGLE_API_KEY = "AIzaSyD-iwKoPUSxGerqKjKhjvAJ3KRERpy0-18"
st.set_page_config(page_title="π¬ Gemini Q&A App", layout="centered")
@st.cache_resource
def load_resources():
"""Load FAISS index, metadata, and embedding model once."""
# Load FAISS index
index = faiss.read_index(f"{SAVE_DIR}/metadata_index.faiss")
# Load dataset metadata
with open(f"{SAVE_DIR}/metadata_info.pkl", "rb") as f:
data = pickle.load(f)
# Load embedding model
embedding_model = SentenceTransformer("./all-MiniLM-L6-v2")
return index, data, embedding_model
@st.cache_resource
def load_gemini_model():
"""Initialize Gemini model once."""
genai.configure(api_key=GOOGLE_API_KEY)
return genai.GenerativeModel("gemini-2.5-flash")
index, data, embedding_model = load_resources()
gemini_model = load_gemini_model()
conn = sqlite3.connect(":memory:")
datasets_list = data["datasets_list"]
metadata_texts = data["metadata_texts"]
dataset_names = data["dataset_names"]
dataset_links = data["source_list"]
def similarity_search(query: str):
"""Find most relevant dataset for a given query using vector similarity."""
query_embedding = embedding_model.encode([query]).astype("float32")
D, I = index.search(query_embedding, k=1)
best_idx = int(I[0][0])
dataset_name = datasets_list[best_idx]
meta = metadata_texts[best_idx]
df = pd.read_csv(f"{DATASET_DIR}/{dataset_name}", encoding="latin1")
columns = df.columns.tolist()
link = meta["table_source"]
columns_info = meta['canonical_schema'][1]
sample_rows = {col: df[col].head(6).tolist() for col in df.columns}
return dataset_name, {
"columns": columns,
"columns_info": columns_info,
"sample_rows": sample_rows,
}, link
def execute_sql(dataset_name: str, command: str) -> str:
"""Run SQL query on selected dataset."""
try:
df = pd.read_csv(f"{DATASET_DIR}/{dataset_name}", encoding="latin1")
df.to_sql("selected_table", conn, index=False, if_exists="replace")
result = pd.read_sql_query(command, conn)
return result.to_markdown(index=False)
except Exception as e:
return f"SQL Execution Error: {e}"
llm_model = RunnableLambda(
lambda x: gemini_model.generate_content(str(x)).text
)
sql_prompt = PromptTemplate(
input_variables=["question", "columns", "columns_info", "sample_rows"],
template="""
You are an expert SQL data analyst.
Your task is to write a **valid and accurate SQL query** that answers the user's question
using only the information from the given table.
---
### USER QUESTION
{question}
### TABLE INFORMATION
Table name: selected_table
Columns:
{columns}
Column descriptions:
{columns_info}
Sample rows:
{sample_rows}
---
### RULES
- Use **only** the given columns and table name. Do NOT invent or assume new columns.
- Be careful with **spelling and case sensitivity** β match column names exactly.
- Prefer general operators like `LIKE` or `BETWEEN` instead of exact equality if unsure about values.
- For text filters, wrap string literals in single quotes `'like this'`.
- If an aggregation (SUM, AVG, COUNT, MAX, MIN) is clearly implied, include it.
- Avoid selecting unnecessary columns β keep output relevant and concise.
- Do NOT include explanations, markdown formatting, or comments.
- Return **only** the SQL query as plain text (no ```sql fences, no prose).
---
### OUTPUT
Return only one SQL query that directly answers the user's question.
"""
)
final_prompt = PromptTemplate(
input_variables=["question", "answer", "link"],
template="""
You are a precise and factual data assistant.
You are given:
1. A user's question.
2. The SQL query result.
3. The dataset's link.
Your goal is to provide a clear, natural-language answer in a few sentences.
---
### QUESTION
{question}
### SQL RESULT
{answer}
### DATA SOURCE
{link}
---
### INSTRUCTIONS
- If the SQL result is empty, respond exactly with:
Sorry, the information related to your question is not available in the current dataset.
(No link in this case.)
- Otherwise:
1. Summarize the insight naturally.
2. Then, start a **new line** and include this line exactly:
Source of information: Government of India Open Data Portal β {link}
---
### OUTPUT
Return only the final answer.
"""
)
parser = StrOutputParser()
sql_chain = sql_prompt | llm_model | parser
final_chain = final_prompt | llm_model | parser
def get_output(query: str) -> str:
"""Run complete pipeline: find dataset β generate SQL β execute β explain."""
dataset_name, llm_input, link = similarity_search(query)
llm_input["question"] = query
sql_query = sql_chain.invoke(llm_input)
sql_result = execute_sql(dataset_name, sql_query)
final_response = final_chain.invoke({"question": query, "answer": sql_result, "link": link})
return final_response
# ==============================
# STREAMLIT UI
# ==============================
st.title("π¬ Samarth Q&A App π§βπ»")
st.write("Ask questions about Agriculture β Samarth gives answer from official goverment data sources.")
user_query = st.text_area("Enter your question:")
if st.button("Submit"):
if not user_query.strip():
st.warning("Please enter a question.")
else:
with st.spinner("Generating response..."):
try:
response = get_output(user_query)
st.markdown("### β
Response")
st.success(response)
except Exception as e:
st.error(f"Error: {e}")
|