Spaces:
Sleeping
Sleeping
Commit
·
0753d2e
1
Parent(s):
83a3714
Initial
Browse files- .env +1 -0
- .gitignore +3 -0
- README.md +58 -4
- app.py +170 -0
- extracted_text.txt +551 -0
- requirements.txt +8 -0
- textScript.py +50 -0
- utils/embeddings_utils.py +48 -0
- utils/pdf_utils.py +35 -0
- utils/qa_utils.py +27 -0
.env
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
OPENAI_API_KEY=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
|
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Chat_with_PDF_Application
|
| 2 |
+
venv
|
| 3 |
+
__pycache__
|
README.md
CHANGED
|
@@ -1,12 +1,66 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: red
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
sdk_version: 1.41.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
-
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Chat With PDF Application
|
| 3 |
+
emoji: 😻
|
| 4 |
colorFrom: red
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: streamlit
|
| 7 |
sdk_version: 1.41.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 12 |
+
|
| 13 |
+
# Chat with PDF Application
|
| 14 |
+
|
| 15 |
+
**Chat with PDF** is an interactive Streamlit app that lets you upload PDFs, converts their content into embeddings using OpenAI, and enables question-answering via GPT-4.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
- **PDF Upload:** Upload one or multiple PDFs.
|
| 19 |
+
- **Text Extraction & Chunking:** Extracts text from PDFs and splits it into manageable chunks.
|
| 20 |
+
- **Embedding Generation:** Converts text chunks into embeddings using OpenAI's `text-embedding-ada-002`.
|
| 21 |
+
- **Question Answering:** Ask questions about your documents and get context-aware answers generated by GPT-4.
|
| 22 |
+
- **Context Display:** View relevant sections from the PDF that support the generated answers.
|
| 23 |
+
|
| 24 |
+
## Installation
|
| 25 |
+
|
| 26 |
+
## Setup
|
| 27 |
+
1. Create and activate a virtual environment:
|
| 28 |
+
```bash
|
| 29 |
+
python3 -m venv venv
|
| 30 |
+
source venv/bin/activate
|
| 31 |
+
```
|
| 32 |
+
# .\venv\Scripts\activate # On Windows
|
| 33 |
+
|
| 34 |
+
2. Install requirements:
|
| 35 |
+
```bash
|
| 36 |
+
pip install -r requirements.txt
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
3. Run the application:
|
| 40 |
+
```bash
|
| 41 |
+
streamlit run app.py
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
4. **Configure API Key:**
|
| 45 |
+
- Create a `.env` file in the root directory.
|
| 46 |
+
- Add your OpenAI API key:
|
| 47 |
+
```
|
| 48 |
+
OPENAI_API_KEY=your_openai_api_key_here
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
## Usage
|
| 52 |
+
|
| 53 |
+
1. **Run the application:**
|
| 54 |
+
```bash
|
| 55 |
+
streamlit run app.py
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
2. **Interact:**
|
| 59 |
+
- Upload PDF files.
|
| 60 |
+
- Wait for processing and embedding generation.
|
| 61 |
+
- Enter a question to get answers with relevant context excerpts from your PDFs.
|
| 62 |
+
|
| 63 |
+
## Notes
|
| 64 |
+
- The app meets core requirements: PDF uploading, text processing, embedding conversion, and Q&A.
|
| 65 |
+
- While context is shown, highlighting directly on the PDF is not implemented yet.
|
| 66 |
+
- Supports multiple PDF uploads and cross-document querying.
|
app.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from utils.pdf_utils import PDFProcessor
|
| 4 |
+
from utils.embeddings_utils import EmbeddingsManager
|
| 5 |
+
from utils.qa_utils import QASystem
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
import openai
|
| 8 |
+
|
| 9 |
+
def initialize_session_state():
|
| 10 |
+
if 'pdf_processor' not in st.session_state:
|
| 11 |
+
st.session_state['pdf_processor'] = None
|
| 12 |
+
if 'embeddings_manager' not in st.session_state:
|
| 13 |
+
st.session_state['embeddings_manager'] = None
|
| 14 |
+
if 'qa_system' not in st.session_state:
|
| 15 |
+
st.session_state['qa_system'] = None
|
| 16 |
+
if 'processed_pdfs' not in st.session_state:
|
| 17 |
+
st.session_state['processed_pdfs'] = set()
|
| 18 |
+
if 'all_text_chunks' not in st.session_state:
|
| 19 |
+
st.session_state['all_text_chunks'] = []
|
| 20 |
+
|
| 21 |
+
def main():
|
| 22 |
+
load_dotenv()
|
| 23 |
+
st.set_page_config(page_title="AI-Powered PDF Assistant", layout="wide")
|
| 24 |
+
|
| 25 |
+
initialize_session_state()
|
| 26 |
+
|
| 27 |
+
# Header Section
|
| 28 |
+
st.markdown(
|
| 29 |
+
"""
|
| 30 |
+
<style>
|
| 31 |
+
.main-header {
|
| 32 |
+
font-size: 2.5rem;
|
| 33 |
+
color: #1F77B4;
|
| 34 |
+
text-align: center;
|
| 35 |
+
margin-bottom: 1rem;
|
| 36 |
+
}
|
| 37 |
+
.sub-header {
|
| 38 |
+
font-size: 1.25rem;
|
| 39 |
+
color: #555;
|
| 40 |
+
text-align: center;
|
| 41 |
+
margin-bottom: 2rem;
|
| 42 |
+
}
|
| 43 |
+
</style>
|
| 44 |
+
<div class="main-header">📘 AI-Powered PDF Assistant</div>
|
| 45 |
+
<div class="sub-header">Upload, Analyze, and Interact with Your Documents</div>
|
| 46 |
+
""",
|
| 47 |
+
unsafe_allow_html=True
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Navigation Menu
|
| 51 |
+
selected_page = st.sidebar.radio(
|
| 52 |
+
"Navigate", ["Upload PDFs", "Ask Questions", "About"]
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
| 56 |
+
if not api_key:
|
| 57 |
+
st.sidebar.error("OpenAI API key not found in .env file!")
|
| 58 |
+
return
|
| 59 |
+
|
| 60 |
+
openai.api_key = api_key
|
| 61 |
+
|
| 62 |
+
if not st.session_state['pdf_processor']:
|
| 63 |
+
st.session_state['pdf_processor'] = PDFProcessor()
|
| 64 |
+
if not st.session_state['embeddings_manager']:
|
| 65 |
+
st.session_state['embeddings_manager'] = EmbeddingsManager(api_key)
|
| 66 |
+
if not st.session_state['qa_system']:
|
| 67 |
+
st.session_state['qa_system'] = QASystem(api_key)
|
| 68 |
+
|
| 69 |
+
if selected_page == "Upload PDFs":
|
| 70 |
+
st.header("📤 Upload PDFs")
|
| 71 |
+
st.markdown(
|
| 72 |
+
"""<p style='font-size: 1.1rem;'>Drag and drop your PDF files below to extract and process content for analysis.</p>""",
|
| 73 |
+
unsafe_allow_html=True
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
uploaded_files = st.file_uploader(
|
| 77 |
+
"Upload PDF files", type=['pdf'], accept_multiple_files=True
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
if uploaded_files:
|
| 81 |
+
new_files = [f for f in uploaded_files if f.name not in st.session_state['processed_pdfs']]
|
| 82 |
+
if new_files:
|
| 83 |
+
with st.spinner("Processing PDFs..."):
|
| 84 |
+
for pdf_file in new_files:
|
| 85 |
+
try:
|
| 86 |
+
pages = st.session_state['pdf_processor'].extract_text(pdf_file)
|
| 87 |
+
for page_text in pages.values():
|
| 88 |
+
chunks = st.session_state['pdf_processor'].chunk_text(page_text)
|
| 89 |
+
st.session_state['all_text_chunks'].extend(chunks)
|
| 90 |
+
st.session_state['processed_pdfs'].add(pdf_file.name)
|
| 91 |
+
except Exception as e:
|
| 92 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
| 93 |
+
continue
|
| 94 |
+
|
| 95 |
+
with st.spinner("Generating embeddings..."):
|
| 96 |
+
try:
|
| 97 |
+
st.session_state['embeddings_manager'].generate_embeddings(
|
| 98 |
+
st.session_state['all_text_chunks']
|
| 99 |
+
)
|
| 100 |
+
st.success("✅ Documents processed successfully!")
|
| 101 |
+
except Exception as e:
|
| 102 |
+
st.error(f"Error generating embeddings: {str(e)}")
|
| 103 |
+
|
| 104 |
+
elif selected_page == "Ask Questions":
|
| 105 |
+
st.header("❓ Ask Questions")
|
| 106 |
+
st.markdown(
|
| 107 |
+
"""<p style='font-size: 1.1rem;'>Query your uploaded documents and get precise answers backed by AI-powered analysis.</p>""",
|
| 108 |
+
unsafe_allow_html=True
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
if st.session_state['all_text_chunks']:
|
| 112 |
+
question = st.text_input("Enter your question:")
|
| 113 |
+
|
| 114 |
+
if question:
|
| 115 |
+
try:
|
| 116 |
+
with st.spinner("Finding relevant information..."):
|
| 117 |
+
relevant_chunks = st.session_state['embeddings_manager'].find_relevant_chunks(
|
| 118 |
+
question, k=3
|
| 119 |
+
)
|
| 120 |
+
answer = st.session_state['qa_system'].generate_answer(
|
| 121 |
+
question, relevant_chunks
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
st.markdown("### 🤖 Answer")
|
| 125 |
+
st.write(answer)
|
| 126 |
+
|
| 127 |
+
with st.expander("🔍 View Source Context"):
|
| 128 |
+
for i, chunk in enumerate(relevant_chunks, 1):
|
| 129 |
+
st.markdown(f"**Context {i}:**")
|
| 130 |
+
st.write(chunk)
|
| 131 |
+
st.markdown("---")
|
| 132 |
+
except openai.error.RateLimitError:
|
| 133 |
+
st.error("Rate limit exceeded. Please try again later.")
|
| 134 |
+
except Exception as e:
|
| 135 |
+
st.error(f"Error: {str(e)}")
|
| 136 |
+
else:
|
| 137 |
+
st.warning("Please upload and process documents in the 'Upload PDFs' section first.")
|
| 138 |
+
|
| 139 |
+
elif selected_page == "About":
|
| 140 |
+
st.header("ℹ️ About This App")
|
| 141 |
+
st.markdown(
|
| 142 |
+
"""
|
| 143 |
+
<p style='font-size: 1.1rem;'>
|
| 144 |
+
<b>AI-Powered PDF Assistant</b> is a smart solution for extracting and querying information from PDF files. With powerful AI integrations,
|
| 145 |
+
this tool allows seamless document analysis and interaction.
|
| 146 |
+
</p>
|
| 147 |
+
|
| 148 |
+
<h3>🔑 Key Features</h3>
|
| 149 |
+
<ul>
|
| 150 |
+
<li>Upload and process multiple PDF files</li>
|
| 151 |
+
<li>Generate embeddings for precise content retrieval</li>
|
| 152 |
+
<li>Query documents and receive context-aware answers</li>
|
| 153 |
+
</ul>
|
| 154 |
+
|
| 155 |
+
<h3>🛠️ Technologies Used</h3>
|
| 156 |
+
<ul>
|
| 157 |
+
<li>Streamlit for interactive UI</li>
|
| 158 |
+
<li>OpenAI GPT API for Q&A</li>
|
| 159 |
+
<li>Custom PDF processing and embedding tools</li>
|
| 160 |
+
</ul>
|
| 161 |
+
|
| 162 |
+
<p style='text-align: center;'>
|
| 163 |
+
Built with ❤️ by [Your Name]
|
| 164 |
+
</p>
|
| 165 |
+
""",
|
| 166 |
+
unsafe_allow_html=True
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
if __name__ == "__main__":
|
| 170 |
+
main()
|
extracted_text.txt
ADDED
|
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--- File: /home/sk/Desktop/chat-with-pdf/app.py ---
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import os
|
| 5 |
+
from utils.pdf_utils import PDFProcessor
|
| 6 |
+
from utils.embeddings_utils import EmbeddingsManager
|
| 7 |
+
from utils.qa_utils import QASystem
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
import openai
|
| 10 |
+
import time
|
| 11 |
+
|
| 12 |
+
def initialize_session_state():
|
| 13 |
+
if 'pdf_processor' not in st.session_state:
|
| 14 |
+
st.session_state['pdf_processor'] = None
|
| 15 |
+
if 'embeddings_manager' not in st.session_state:
|
| 16 |
+
st.session_state['embeddings_manager'] = None
|
| 17 |
+
if 'qa_system' not in st.session_state:
|
| 18 |
+
st.session_state['qa_system'] = None
|
| 19 |
+
if 'processed_pdfs' not in st.session_state:
|
| 20 |
+
st.session_state['processed_pdfs'] = set()
|
| 21 |
+
if 'all_text_chunks' not in st.session_state:
|
| 22 |
+
st.session_state['all_text_chunks'] = []
|
| 23 |
+
|
| 24 |
+
def main():
|
| 25 |
+
load_dotenv()
|
| 26 |
+
st.set_page_config(page_title="Chat with PDF", layout="wide")
|
| 27 |
+
st.title("📄💬 Chat with PDF")
|
| 28 |
+
|
| 29 |
+
initialize_session_state()
|
| 30 |
+
|
| 31 |
+
with st.sidebar:
|
| 32 |
+
st.header("🔍 How to Use")
|
| 33 |
+
st.markdown("""
|
| 34 |
+
1. Upload PDF document(s)
|
| 35 |
+
2. Ask questions about the content
|
| 36 |
+
3. View answers and relevant context
|
| 37 |
+
""")
|
| 38 |
+
if 'total_tokens_used' in st.session_state:
|
| 39 |
+
st.markdown("---")
|
| 40 |
+
st.markdown("### 📊 Usage Statistics")
|
| 41 |
+
st.markdown(f"Total tokens used: {st.session_state.get('total_tokens_used', 0)}")
|
| 42 |
+
|
| 43 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
| 44 |
+
if not api_key:
|
| 45 |
+
st.error("OpenAI API key not found in .env file!")
|
| 46 |
+
return
|
| 47 |
+
|
| 48 |
+
openai.api_key = api_key
|
| 49 |
+
|
| 50 |
+
if not st.session_state['pdf_processor']:
|
| 51 |
+
st.session_state['pdf_processor'] = PDFProcessor()
|
| 52 |
+
if not st.session_state['embeddings_manager']:
|
| 53 |
+
st.session_state['embeddings_manager'] = EmbeddingsManager(api_key)
|
| 54 |
+
if not st.session_state['qa_system']:
|
| 55 |
+
st.session_state['qa_system'] = QASystem(api_key)
|
| 56 |
+
|
| 57 |
+
st.subheader("📤 Upload PDFs")
|
| 58 |
+
uploaded_files = st.file_uploader(
|
| 59 |
+
"Upload PDF documents",
|
| 60 |
+
type=['pdf'],
|
| 61 |
+
accept_multiple_files=True
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
if uploaded_files:
|
| 65 |
+
new_files = [f for f in uploaded_files if f.name not in st.session_state['processed_pdfs']]
|
| 66 |
+
if new_files:
|
| 67 |
+
with st.spinner("Processing PDFs..."):
|
| 68 |
+
for pdf_file in new_files:
|
| 69 |
+
try:
|
| 70 |
+
pages = st.session_state['pdf_processor'].extract_text(pdf_file)
|
| 71 |
+
for page_text in pages.values():
|
| 72 |
+
chunks = st.session_state['pdf_processor'].chunk_text(page_text)
|
| 73 |
+
st.session_state['all_text_chunks'].extend(chunks)
|
| 74 |
+
st.session_state['processed_pdfs'].add(pdf_file.name)
|
| 75 |
+
except Exception as e:
|
| 76 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
with st.spinner("Generating embeddings..."):
|
| 80 |
+
try:
|
| 81 |
+
st.session_state['embeddings_manager'].generate_embeddings(
|
| 82 |
+
st.session_state['all_text_chunks']
|
| 83 |
+
)
|
| 84 |
+
st.success("✅ Documents processed!")
|
| 85 |
+
except Exception as e:
|
| 86 |
+
st.error(f"Error generating embeddings: {str(e)}")
|
| 87 |
+
return
|
| 88 |
+
|
| 89 |
+
if st.session_state['all_text_chunks']:
|
| 90 |
+
st.write("---")
|
| 91 |
+
st.subheader("❓ Ask Questions About Your Documents")
|
| 92 |
+
question = st.text_input("Enter your question:")
|
| 93 |
+
if question:
|
| 94 |
+
try:
|
| 95 |
+
with st.spinner("Searching for relevant information..."):
|
| 96 |
+
relevant_chunks = st.session_state['embeddings_manager'].find_relevant_chunks(
|
| 97 |
+
question,
|
| 98 |
+
k=3
|
| 99 |
+
)
|
| 100 |
+
answer = st.session_state['qa_system'].generate_answer(
|
| 101 |
+
question,
|
| 102 |
+
relevant_chunks
|
| 103 |
+
)
|
| 104 |
+
st.markdown("### 🤖 Answer:")
|
| 105 |
+
st.write(answer)
|
| 106 |
+
with st.expander("🔍 View Source Context"):
|
| 107 |
+
for i, chunk in enumerate(relevant_chunks, 1):
|
| 108 |
+
st.markdown(f"**Context {i}:**")
|
| 109 |
+
st.write(chunk)
|
| 110 |
+
st.markdown("---")
|
| 111 |
+
except openai.error.RateLimitError:
|
| 112 |
+
st.error("Rate limit exceeded. Please try again later.")
|
| 113 |
+
except Exception as e:
|
| 114 |
+
st.error(f"Error: {str(e)}")
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
main()
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
--- File: /home/sk/Desktop/chat-with-pdf/requirements.txt ---
|
| 121 |
+
|
| 122 |
+
streamlit
|
| 123 |
+
PyPDF2
|
| 124 |
+
openai
|
| 125 |
+
python-dotenv
|
| 126 |
+
faiss-cpu
|
| 127 |
+
numpy
|
| 128 |
+
pdf2image
|
| 129 |
+
Pillow
|
| 130 |
+
|
| 131 |
+
--- File: /home/sk/Desktop/chat-with-pdf/.env ---
|
| 132 |
+
|
| 133 |
+
OPENAI_API_KEY=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
|
| 134 |
+
|
| 135 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/app.py ---
|
| 136 |
+
|
| 137 |
+
import streamlit as st
|
| 138 |
+
import os
|
| 139 |
+
from utils.pdf_utils import PDFProcessor
|
| 140 |
+
from utils.embeddings_utils import EmbeddingsManager
|
| 141 |
+
from utils.qa_utils import QASystem
|
| 142 |
+
from dotenv import load_dotenv
|
| 143 |
+
import openai
|
| 144 |
+
import time
|
| 145 |
+
|
| 146 |
+
def initialize_session_state():
|
| 147 |
+
if 'pdf_processor' not in st.session_state:
|
| 148 |
+
st.session_state['pdf_processor'] = None
|
| 149 |
+
if 'embeddings_manager' not in st.session_state:
|
| 150 |
+
st.session_state['embeddings_manager'] = None
|
| 151 |
+
if 'qa_system' not in st.session_state:
|
| 152 |
+
st.session_state['qa_system'] = None
|
| 153 |
+
if 'processed_pdfs' not in st.session_state:
|
| 154 |
+
st.session_state['processed_pdfs'] = set()
|
| 155 |
+
if 'all_text_chunks' not in st.session_state:
|
| 156 |
+
st.session_state['all_text_chunks'] = []
|
| 157 |
+
|
| 158 |
+
def main():
|
| 159 |
+
load_dotenv()
|
| 160 |
+
st.set_page_config(page_title="Chat with PDF", layout="wide")
|
| 161 |
+
st.title("📄💬 Chat with PDF")
|
| 162 |
+
|
| 163 |
+
initialize_session_state()
|
| 164 |
+
|
| 165 |
+
with st.sidebar:
|
| 166 |
+
st.header("🔍 How to Use")
|
| 167 |
+
st.markdown("""
|
| 168 |
+
1. Upload PDF document(s)
|
| 169 |
+
2. Ask questions about the content
|
| 170 |
+
3. View answers and relevant context
|
| 171 |
+
""")
|
| 172 |
+
if 'total_tokens_used' in st.session_state:
|
| 173 |
+
st.markdown("---")
|
| 174 |
+
st.markdown("### 📊 Usage Statistics")
|
| 175 |
+
st.markdown(f"Total tokens used: {st.session_state.get('total_tokens_used', 0)}")
|
| 176 |
+
|
| 177 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
| 178 |
+
if not api_key:
|
| 179 |
+
st.error("OpenAI API key not found in .env file!")
|
| 180 |
+
return
|
| 181 |
+
|
| 182 |
+
openai.api_key = api_key
|
| 183 |
+
|
| 184 |
+
if not st.session_state['pdf_processor']:
|
| 185 |
+
st.session_state['pdf_processor'] = PDFProcessor()
|
| 186 |
+
if not st.session_state['embeddings_manager']:
|
| 187 |
+
st.session_state['embeddings_manager'] = EmbeddingsManager(api_key)
|
| 188 |
+
if not st.session_state['qa_system']:
|
| 189 |
+
st.session_state['qa_system'] = QASystem(api_key)
|
| 190 |
+
|
| 191 |
+
st.subheader("📤 Upload PDFs")
|
| 192 |
+
uploaded_files = st.file_uploader(
|
| 193 |
+
"Upload PDF documents",
|
| 194 |
+
type=['pdf'],
|
| 195 |
+
accept_multiple_files=True
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
if uploaded_files:
|
| 199 |
+
new_files = [f for f in uploaded_files if f.name not in st.session_state['processed_pdfs']]
|
| 200 |
+
if new_files:
|
| 201 |
+
with st.spinner("Processing PDFs..."):
|
| 202 |
+
for pdf_file in new_files:
|
| 203 |
+
try:
|
| 204 |
+
pages = st.session_state['pdf_processor'].extract_text(pdf_file)
|
| 205 |
+
for page_text in pages.values():
|
| 206 |
+
chunks = st.session_state['pdf_processor'].chunk_text(page_text)
|
| 207 |
+
st.session_state['all_text_chunks'].extend(chunks)
|
| 208 |
+
st.session_state['processed_pdfs'].add(pdf_file.name)
|
| 209 |
+
except Exception as e:
|
| 210 |
+
st.error(f"Error processing {pdf_file.name}: {str(e)}")
|
| 211 |
+
continue
|
| 212 |
+
|
| 213 |
+
with st.spinner("Generating embeddings..."):
|
| 214 |
+
try:
|
| 215 |
+
st.session_state['embeddings_manager'].generate_embeddings(
|
| 216 |
+
st.session_state['all_text_chunks']
|
| 217 |
+
)
|
| 218 |
+
st.success("✅ Documents processed!")
|
| 219 |
+
except Exception as e:
|
| 220 |
+
st.error(f"Error generating embeddings: {str(e)}")
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
if st.session_state['all_text_chunks']:
|
| 224 |
+
st.write("---")
|
| 225 |
+
st.subheader("❓ Ask Questions About Your Documents")
|
| 226 |
+
question = st.text_input("Enter your question:")
|
| 227 |
+
if question:
|
| 228 |
+
try:
|
| 229 |
+
with st.spinner("Searching for relevant information..."):
|
| 230 |
+
relevant_chunks = st.session_state['embeddings_manager'].find_relevant_chunks(
|
| 231 |
+
question,
|
| 232 |
+
k=3
|
| 233 |
+
)
|
| 234 |
+
answer = st.session_state['qa_system'].generate_answer(
|
| 235 |
+
question,
|
| 236 |
+
relevant_chunks
|
| 237 |
+
)
|
| 238 |
+
st.markdown("### 🤖 Answer:")
|
| 239 |
+
st.write(answer)
|
| 240 |
+
with st.expander("🔍 View Source Context"):
|
| 241 |
+
for i, chunk in enumerate(relevant_chunks, 1):
|
| 242 |
+
st.markdown(f"**Context {i}:**")
|
| 243 |
+
st.write(chunk)
|
| 244 |
+
st.markdown("---")
|
| 245 |
+
except openai.error.RateLimitError:
|
| 246 |
+
st.error("Rate limit exceeded. Please try again later.")
|
| 247 |
+
except Exception as e:
|
| 248 |
+
st.error(f"Error: {str(e)}")
|
| 249 |
+
|
| 250 |
+
if __name__ == "__main__":
|
| 251 |
+
main()
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/requirements.txt ---
|
| 255 |
+
|
| 256 |
+
streamlit
|
| 257 |
+
PyPDF2
|
| 258 |
+
openai
|
| 259 |
+
python-dotenv
|
| 260 |
+
faiss-cpu
|
| 261 |
+
numpy
|
| 262 |
+
pdf2image
|
| 263 |
+
Pillow
|
| 264 |
+
|
| 265 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/.gitattributes ---
|
| 266 |
+
|
| 267 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 268 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 269 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 270 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 271 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 272 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 273 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 274 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 275 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 276 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 277 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 278 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 279 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 280 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 281 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 282 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 283 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 284 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 285 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 286 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 287 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 288 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 289 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 290 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 291 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 292 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 293 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 294 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 295 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 296 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 297 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 298 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 299 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 300 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 301 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/.env ---
|
| 305 |
+
|
| 306 |
+
OPENAI_API_KEY=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
|
| 307 |
+
|
| 308 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/utils/qa_utils.py ---
|
| 309 |
+
|
| 310 |
+
import openai
|
| 311 |
+
from typing import List
|
| 312 |
+
|
| 313 |
+
class QASystem:
|
| 314 |
+
def __init__(self, api_key: str):
|
| 315 |
+
openai.api_key = api_key
|
| 316 |
+
|
| 317 |
+
def generate_answer(self, question: str, context: List[str]) -> str:
|
| 318 |
+
prompt = f"""Based on the context provided below, answer the question.
|
| 319 |
+
If the answer is not in the context, respond with "The answer is not in the provided context."
|
| 320 |
+
|
| 321 |
+
Context:
|
| 322 |
+
{' '.join(context)}
|
| 323 |
+
|
| 324 |
+
Question: {question}
|
| 325 |
+
"""
|
| 326 |
+
|
| 327 |
+
response = openai.chat.completions.create( # Updated line
|
| 328 |
+
model="gpt-4",
|
| 329 |
+
messages=[
|
| 330 |
+
{"role": "system", "content": "You are an assistant answering questions based on the provided context."},
|
| 331 |
+
{"role": "user", "content": prompt}
|
| 332 |
+
],
|
| 333 |
+
temperature=0,
|
| 334 |
+
max_tokens=500
|
| 335 |
+
)
|
| 336 |
+
return response.choices[0].message.content
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/utils/embeddings_utils.py ---
|
| 340 |
+
|
| 341 |
+
import openai
|
| 342 |
+
import numpy as np
|
| 343 |
+
import faiss
|
| 344 |
+
from typing import List
|
| 345 |
+
|
| 346 |
+
class EmbeddingsManager:
|
| 347 |
+
def __init__(self, api_key: str):
|
| 348 |
+
self.api_key = api_key
|
| 349 |
+
self.index = None
|
| 350 |
+
self.chunks = []
|
| 351 |
+
|
| 352 |
+
def generate_embeddings(self, text_chunks: List[str]):
|
| 353 |
+
"""Generate embeddings for text chunks using OpenAI API."""
|
| 354 |
+
batch_size = 10
|
| 355 |
+
embeddings = []
|
| 356 |
+
|
| 357 |
+
for i in range(0, len(text_chunks), batch_size):
|
| 358 |
+
batch = text_chunks[i:i + batch_size]
|
| 359 |
+
response = openai.embeddings.create(
|
| 360 |
+
input=batch,
|
| 361 |
+
model="text-embedding-ada-002"
|
| 362 |
+
)
|
| 363 |
+
# Access the embeddings using attributes
|
| 364 |
+
batch_embeddings = [item.embedding for item in response.data]
|
| 365 |
+
embeddings.extend(batch_embeddings)
|
| 366 |
+
|
| 367 |
+
# Create FAISS index
|
| 368 |
+
dimension = len(embeddings[0])
|
| 369 |
+
self.index = faiss.IndexFlatL2(dimension)
|
| 370 |
+
embeddings_array = np.array(embeddings).astype('float32')
|
| 371 |
+
self.index.add(embeddings_array)
|
| 372 |
+
self.chunks = text_chunks
|
| 373 |
+
|
| 374 |
+
def find_relevant_chunks(self, query: str, k: int = 3) -> List[str]:
|
| 375 |
+
"""Find most relevant text chunks for a given query."""
|
| 376 |
+
response = openai.embeddings.create(
|
| 377 |
+
input=[query],
|
| 378 |
+
model="text-embedding-ada-002"
|
| 379 |
+
)
|
| 380 |
+
# Access the query embedding using attributes
|
| 381 |
+
query_embedding = response.data[0].embedding
|
| 382 |
+
|
| 383 |
+
D, I = self.index.search(
|
| 384 |
+
np.array([query_embedding]).astype('float32'),
|
| 385 |
+
k
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
return [self.chunks[i] for i in I[0] if i != -1]
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
--- File: /home/sk/Desktop/chat-with-pdf/Chat_with_PDF_Application/utils/pdf_utils.py ---
|
| 392 |
+
|
| 393 |
+
import PyPDF2
|
| 394 |
+
from typing import List, Dict
|
| 395 |
+
|
| 396 |
+
class PDFProcessor:
|
| 397 |
+
def __init__(self):
|
| 398 |
+
self.pages = {}
|
| 399 |
+
|
| 400 |
+
def extract_text(self, pdf_file) -> Dict[int, str]:
|
| 401 |
+
"""Extract text from PDF and return a dictionary of page numbers and text."""
|
| 402 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 403 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 404 |
+
text = pdf_reader.pages[page_num].extract_text()
|
| 405 |
+
self.pages[page_num] = text
|
| 406 |
+
return self.pages
|
| 407 |
+
|
| 408 |
+
def chunk_text(self, text: str, chunk_size: int = 1000) -> List[str]:
|
| 409 |
+
"""Split text into chunks of specified size."""
|
| 410 |
+
words = text.split()
|
| 411 |
+
chunks = []
|
| 412 |
+
current_chunk = []
|
| 413 |
+
current_size = 0
|
| 414 |
+
|
| 415 |
+
for word in words:
|
| 416 |
+
current_size += len(word) + 1 # +1 for space
|
| 417 |
+
if current_size > chunk_size:
|
| 418 |
+
chunks.append(' '.join(current_chunk))
|
| 419 |
+
current_chunk = [word]
|
| 420 |
+
current_size = len(word)
|
| 421 |
+
else:
|
| 422 |
+
current_chunk.append(word)
|
| 423 |
+
|
| 424 |
+
if current_chunk:
|
| 425 |
+
chunks.append(' '.join(current_chunk))
|
| 426 |
+
|
| 427 |
+
return chunks
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
--- File: /home/sk/Desktop/chat-with-pdf/utils/qa_utils.py ---
|
| 431 |
+
|
| 432 |
+
import openai
|
| 433 |
+
from typing import List
|
| 434 |
+
|
| 435 |
+
class QASystem:
|
| 436 |
+
def __init__(self, api_key: str):
|
| 437 |
+
openai.api_key = api_key
|
| 438 |
+
|
| 439 |
+
def generate_answer(self, question: str, context: List[str]) -> str:
|
| 440 |
+
prompt = f"""Based on the context provided below, answer the question.
|
| 441 |
+
If the answer is not in the context, respond with "The answer is not in the provided context."
|
| 442 |
+
|
| 443 |
+
Context:
|
| 444 |
+
{' '.join(context)}
|
| 445 |
+
|
| 446 |
+
Question: {question}
|
| 447 |
+
"""
|
| 448 |
+
|
| 449 |
+
response = openai.chat.completions.create( # Updated line
|
| 450 |
+
model="gpt-4",
|
| 451 |
+
messages=[
|
| 452 |
+
{"role": "system", "content": "You are an assistant answering questions based on the provided context."},
|
| 453 |
+
{"role": "user", "content": prompt}
|
| 454 |
+
],
|
| 455 |
+
temperature=0,
|
| 456 |
+
max_tokens=500
|
| 457 |
+
)
|
| 458 |
+
return response.choices[0].message.content
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
--- File: /home/sk/Desktop/chat-with-pdf/utils/embeddings_utils.py ---
|
| 462 |
+
|
| 463 |
+
import openai
|
| 464 |
+
import numpy as np
|
| 465 |
+
import faiss
|
| 466 |
+
from typing import List
|
| 467 |
+
|
| 468 |
+
class EmbeddingsManager:
|
| 469 |
+
def __init__(self, api_key: str):
|
| 470 |
+
self.api_key = api_key
|
| 471 |
+
self.index = None
|
| 472 |
+
self.chunks = []
|
| 473 |
+
|
| 474 |
+
def generate_embeddings(self, text_chunks: List[str]):
|
| 475 |
+
"""Generate embeddings for text chunks using OpenAI API."""
|
| 476 |
+
batch_size = 10
|
| 477 |
+
embeddings = []
|
| 478 |
+
|
| 479 |
+
for i in range(0, len(text_chunks), batch_size):
|
| 480 |
+
batch = text_chunks[i:i + batch_size]
|
| 481 |
+
response = openai.embeddings.create(
|
| 482 |
+
input=batch,
|
| 483 |
+
model="text-embedding-ada-002"
|
| 484 |
+
)
|
| 485 |
+
# Access the embeddings using attributes
|
| 486 |
+
batch_embeddings = [item.embedding for item in response.data]
|
| 487 |
+
embeddings.extend(batch_embeddings)
|
| 488 |
+
|
| 489 |
+
# Create FAISS index
|
| 490 |
+
dimension = len(embeddings[0])
|
| 491 |
+
self.index = faiss.IndexFlatL2(dimension)
|
| 492 |
+
embeddings_array = np.array(embeddings).astype('float32')
|
| 493 |
+
self.index.add(embeddings_array)
|
| 494 |
+
self.chunks = text_chunks
|
| 495 |
+
|
| 496 |
+
def find_relevant_chunks(self, query: str, k: int = 3) -> List[str]:
|
| 497 |
+
"""Find most relevant text chunks for a given query."""
|
| 498 |
+
response = openai.embeddings.create(
|
| 499 |
+
input=[query],
|
| 500 |
+
model="text-embedding-ada-002"
|
| 501 |
+
)
|
| 502 |
+
# Access the query embedding using attributes
|
| 503 |
+
query_embedding = response.data[0].embedding
|
| 504 |
+
|
| 505 |
+
D, I = self.index.search(
|
| 506 |
+
np.array([query_embedding]).astype('float32'),
|
| 507 |
+
k
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
return [self.chunks[i] for i in I[0] if i != -1]
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
--- File: /home/sk/Desktop/chat-with-pdf/utils/pdf_utils.py ---
|
| 514 |
+
|
| 515 |
+
import PyPDF2
|
| 516 |
+
from typing import List, Dict
|
| 517 |
+
|
| 518 |
+
class PDFProcessor:
|
| 519 |
+
def __init__(self):
|
| 520 |
+
self.pages = {}
|
| 521 |
+
|
| 522 |
+
def extract_text(self, pdf_file) -> Dict[int, str]:
|
| 523 |
+
"""Extract text from PDF and return a dictionary of page numbers and text."""
|
| 524 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 525 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 526 |
+
text = pdf_reader.pages[page_num].extract_text()
|
| 527 |
+
self.pages[page_num] = text
|
| 528 |
+
return self.pages
|
| 529 |
+
|
| 530 |
+
def chunk_text(self, text: str, chunk_size: int = 1000) -> List[str]:
|
| 531 |
+
"""Split text into chunks of specified size."""
|
| 532 |
+
words = text.split()
|
| 533 |
+
chunks = []
|
| 534 |
+
current_chunk = []
|
| 535 |
+
current_size = 0
|
| 536 |
+
|
| 537 |
+
for word in words:
|
| 538 |
+
current_size += len(word) + 1 # +1 for space
|
| 539 |
+
if current_size > chunk_size:
|
| 540 |
+
chunks.append(' '.join(current_chunk))
|
| 541 |
+
current_chunk = [word]
|
| 542 |
+
current_size = len(word)
|
| 543 |
+
else:
|
| 544 |
+
current_chunk.append(word)
|
| 545 |
+
|
| 546 |
+
if current_chunk:
|
| 547 |
+
chunks.append(' '.join(current_chunk))
|
| 548 |
+
|
| 549 |
+
return chunks
|
| 550 |
+
|
| 551 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
PyPDF2
|
| 3 |
+
openai
|
| 4 |
+
python-dotenv
|
| 5 |
+
faiss-cpu
|
| 6 |
+
numpy
|
| 7 |
+
pdf2image
|
| 8 |
+
Pillow
|
textScript.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
def extract_text_from_folder(folder_path, output_file, files_to_skip=None, folders_to_skip=None):
|
| 4 |
+
"""
|
| 5 |
+
Extracts text from all files within a folder and its subfolders.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
if files_to_skip is None:
|
| 9 |
+
files_to_skip = []
|
| 10 |
+
if folders_to_skip is None:
|
| 11 |
+
folders_to_skip = []
|
| 12 |
+
|
| 13 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 14 |
+
output_file_path = os.path.join(script_dir, output_file)
|
| 15 |
+
|
| 16 |
+
with open(output_file_path, 'w', encoding='utf-8') as outfile:
|
| 17 |
+
for foldername, subfolders, filenames in os.walk(folder_path):
|
| 18 |
+
# Check if folder to skip is in the current folder path
|
| 19 |
+
should_skip_folder = any(folder in foldername for folder in folders_to_skip)
|
| 20 |
+
|
| 21 |
+
if should_skip_folder:
|
| 22 |
+
print(f"Skipping specified folder: {foldername}")
|
| 23 |
+
continue
|
| 24 |
+
|
| 25 |
+
for filename in filenames:
|
| 26 |
+
if filename in files_to_skip:
|
| 27 |
+
print(f"Skipping specified file: {filename}")
|
| 28 |
+
continue
|
| 29 |
+
|
| 30 |
+
file_path = os.path.join(foldername, filename)
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 34 |
+
text = f.read()
|
| 35 |
+
outfile.write(f"--- File: {file_path} ---\n\n")
|
| 36 |
+
outfile.write(text)
|
| 37 |
+
outfile.write("\n\n")
|
| 38 |
+
except UnicodeDecodeError:
|
| 39 |
+
print(f"Skipping binary file: {file_path}")
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f"Error processing {file_path}: {e}")
|
| 42 |
+
|
| 43 |
+
if __name__ == "__main__":
|
| 44 |
+
folder_to_extract = "/home/sk/Desktop/chat-with-pdf"
|
| 45 |
+
output_text_file = "extracted_text.txt"
|
| 46 |
+
files_to_skip = ["extracted_text.txt", "next.config.ts", "next.config.mjs", "tailwind.config.ts", "tsconfig.json","postcss.config.mjs","next-env.d.ts","components.json",".eslintrc.json","EDA.ipynb","evaluate.ipynb","textScript.py","stock_price.csv","README.md","globals.css","auto_complete.json", "another_file.css", "LogoBadge.svelte","README.md",".gitignore","package-lock.json","package.json"]
|
| 47 |
+
folders_to_skip = ["__pycache__", "venv", ".next","results","models","notebooks","data","env","__pycache__","redux","resetpassword","login","register","assets","icon", "asset", "node_modules",".git"]
|
| 48 |
+
|
| 49 |
+
extract_text_from_folder(folder_to_extract, output_text_file, files_to_skip, folders_to_skip)
|
| 50 |
+
print(f"Text extraction complete. Output saved to: {output_text_file}")
|
utils/embeddings_utils.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
import numpy as np
|
| 3 |
+
import faiss
|
| 4 |
+
from typing import List
|
| 5 |
+
|
| 6 |
+
class EmbeddingsManager:
|
| 7 |
+
def __init__(self, api_key: str):
|
| 8 |
+
self.api_key = api_key
|
| 9 |
+
self.index = None
|
| 10 |
+
self.chunks = []
|
| 11 |
+
|
| 12 |
+
def generate_embeddings(self, text_chunks: List[str]):
|
| 13 |
+
"""Generate embeddings for text chunks using OpenAI API."""
|
| 14 |
+
batch_size = 10
|
| 15 |
+
embeddings = []
|
| 16 |
+
|
| 17 |
+
for i in range(0, len(text_chunks), batch_size):
|
| 18 |
+
batch = text_chunks[i:i + batch_size]
|
| 19 |
+
response = openai.embeddings.create(
|
| 20 |
+
input=batch,
|
| 21 |
+
model="text-embedding-ada-002"
|
| 22 |
+
)
|
| 23 |
+
# Access the embeddings using attributes
|
| 24 |
+
batch_embeddings = [item.embedding for item in response.data]
|
| 25 |
+
embeddings.extend(batch_embeddings)
|
| 26 |
+
|
| 27 |
+
# Create FAISS index
|
| 28 |
+
dimension = len(embeddings[0])
|
| 29 |
+
self.index = faiss.IndexFlatL2(dimension)
|
| 30 |
+
embeddings_array = np.array(embeddings).astype('float32')
|
| 31 |
+
self.index.add(embeddings_array)
|
| 32 |
+
self.chunks = text_chunks
|
| 33 |
+
|
| 34 |
+
def find_relevant_chunks(self, query: str, k: int = 3) -> List[str]:
|
| 35 |
+
"""Find most relevant text chunks for a given query."""
|
| 36 |
+
response = openai.embeddings.create(
|
| 37 |
+
input=[query],
|
| 38 |
+
model="text-embedding-ada-002"
|
| 39 |
+
)
|
| 40 |
+
# Access the query embedding using attributes
|
| 41 |
+
query_embedding = response.data[0].embedding
|
| 42 |
+
|
| 43 |
+
D, I = self.index.search(
|
| 44 |
+
np.array([query_embedding]).astype('float32'),
|
| 45 |
+
k
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
return [self.chunks[i] for i in I[0] if i != -1]
|
utils/pdf_utils.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import PyPDF2
|
| 2 |
+
from typing import List, Dict
|
| 3 |
+
|
| 4 |
+
class PDFProcessor:
|
| 5 |
+
def __init__(self):
|
| 6 |
+
self.pages = {}
|
| 7 |
+
|
| 8 |
+
def extract_text(self, pdf_file) -> Dict[int, str]:
|
| 9 |
+
"""Extract text from PDF and return a dictionary of page numbers and text."""
|
| 10 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 11 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 12 |
+
text = pdf_reader.pages[page_num].extract_text()
|
| 13 |
+
self.pages[page_num] = text
|
| 14 |
+
return self.pages
|
| 15 |
+
|
| 16 |
+
def chunk_text(self, text: str, chunk_size: int = 1000) -> List[str]:
|
| 17 |
+
"""Split text into chunks of specified size."""
|
| 18 |
+
words = text.split()
|
| 19 |
+
chunks = []
|
| 20 |
+
current_chunk = []
|
| 21 |
+
current_size = 0
|
| 22 |
+
|
| 23 |
+
for word in words:
|
| 24 |
+
current_size += len(word) + 1 # +1 for space
|
| 25 |
+
if current_size > chunk_size:
|
| 26 |
+
chunks.append(' '.join(current_chunk))
|
| 27 |
+
current_chunk = [word]
|
| 28 |
+
current_size = len(word)
|
| 29 |
+
else:
|
| 30 |
+
current_chunk.append(word)
|
| 31 |
+
|
| 32 |
+
if current_chunk:
|
| 33 |
+
chunks.append(' '.join(current_chunk))
|
| 34 |
+
|
| 35 |
+
return chunks
|
utils/qa_utils.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
class QASystem:
|
| 5 |
+
def __init__(self, api_key: str):
|
| 6 |
+
openai.api_key = api_key
|
| 7 |
+
|
| 8 |
+
def generate_answer(self, question: str, context: List[str]) -> str:
|
| 9 |
+
prompt = f"""Based on the context provided below, answer the question.
|
| 10 |
+
If the answer is not in the context, respond with "The answer is not in the provided context."
|
| 11 |
+
|
| 12 |
+
Context:
|
| 13 |
+
{' '.join(context)}
|
| 14 |
+
|
| 15 |
+
Question: {question}
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
response = openai.chat.completions.create( # Updated line
|
| 19 |
+
model="gpt-4",
|
| 20 |
+
messages=[
|
| 21 |
+
{"role": "system", "content": "You are an assistant answering questions based on the provided context."},
|
| 22 |
+
{"role": "user", "content": prompt}
|
| 23 |
+
],
|
| 24 |
+
temperature=0,
|
| 25 |
+
max_tokens=500
|
| 26 |
+
)
|
| 27 |
+
return response.choices[0].message.content
|