Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,716 Bytes
3407e44 865391b 3407e44 865391b 40290c7 d8e6a5c 40290c7 d8e6a5c 865391b 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 865391b 40290c7 865391b 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 865391b 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 865391b d8e6a5c 40290c7 865391b d8e6a5c 865391b d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 865391b d8e6a5c 40290c7 865391b d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 865391b d8e6a5c 865391b d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 865391b d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 d8e6a5c 40290c7 865391b 40290c7 d8e6a5c 40290c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import gradio as gr
import torch
import os
import glob
import spaces
import numpy as np
from datetime import datetime
from PIL import Image
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler
from pipline_StableDiffusionXL_ConsistentID import ConsistentIDStableDiffusionXLPipeline
from huggingface_hub import hf_hub_download
from models.BiSeNet.model import BiSeNet
# ====================================================================================
# Global model management for ZeroGPU compatibility
# ====================================================================================
DEVICE = "cuda"
pipe = None
bise_net = None
def load_models():
"""Load all models on CPU to avoid ZeroGPU initialization issues"""
global pipe, bise_net
if pipe is not None:
return
print("โณ Loading models on CPU...")
base_model_path = "SG161222/RealVisXL_V3.0"
consistentID_path = hf_hub_download(
repo_id="JackAILab/ConsistentID",
filename="ConsistentID_SDXL-v1.bin",
repo_type="model"
)
# Load pipeline on CPU
pipe = ConsistentIDStableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
safety_checker=None,
variant="fp16"
)
# Load BiSeNet
bise_net_cp_path = hf_hub_download(
repo_id="JackAILab/ConsistentID",
filename="face_parsing.pth",
local_dir="./checkpoints"
)
bise_net = BiSeNet(n_classes=19)
bise_net.load_state_dict(torch.load(bise_net_cp_path, map_location="cpu"))
# Load ConsistentID components
pipe.load_ConsistentID_model(
os.path.dirname(consistentID_path),
bise_net,
subfolder="",
weight_name=os.path.basename(consistentID_path),
trigger_word="img",
)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
print("โ
Models loaded successfully")
load_models()
# ====================================================================================
# Inference function with GPU management
# ====================================================================================
@spaces.GPU(duration=180) # Extended duration for SDXL
def generate_image(
selected_template_images,
custom_image,
prompt,
negative_prompt,
prompt_selected,
model_selected_tab,
prompt_selected_tab,
width,
height,
merge_steps,
seed,
num_steps
):
"""
Generate image using ConsistentID-SDXL
"""
global pipe, bise_net
print("๐ Moving models to GPU...")
# Move to GPU
pipe.to(DEVICE)
pipe.image_encoder.to(DEVICE)
pipe.image_proj_model.to(DEVICE)
pipe.FacialEncoder.to(DEVICE)
bise_net.to(DEVICE)
try:
# Select input image
if model_selected_tab == 0:
input_image = load_image(Image.open(selected_template_images))
else:
input_image = load_image(Image.fromarray(custom_image))
# Select prompt
if prompt_selected_tab == 0:
prompt = prompt_selected
negative_prompt = ""
need_safetycheck = False
else:
need_safetycheck = True
# Default prompts
if not prompt or prompt.strip() == "":
prompt = "A person, professional portrait"
if not negative_prompt or negative_prompt.strip() == "":
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
# Enhance prompt
enhanced_prompt = f"cinematic photo, {prompt}, 50mm photograph, half-length portrait, film, bokeh, professional, 4k, highly detailed"
# Negative prompt enhancement
negative_enhancement = "((cross-eye)), ((cross-eyed)), (((NSFW))), (nipple), ((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)), [out of frame], extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), ((extra limbs)), cloned face, (((disfigured))), out of frame, ugly, extra limbs, (bad anatomy), gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), mutated hands, (fused fingers), (too many fingers), (((long neck)))"
final_negative_prompt = negative_prompt + ", " + negative_enhancement
generator = torch.Generator(device=DEVICE).manual_seed(seed)
print(f"๐จ Generating with prompt: {enhanced_prompt[:100]}...")
images = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
input_id_images=input_image,
input_image_path=selected_template_images if model_selected_tab == 0 else None,
negative_prompt=final_negative_prompt,
num_images_per_prompt=1,
num_inference_steps=num_steps,
start_merge_step=merge_steps,
generator=generator,
retouching=False,
need_safetycheck=need_safetycheck,
).images[0]
print("โ
Generation completed")
return np.array(images)
except Exception as e:
print(f"โ Error: {str(e)}")
raise
finally:
# Clean up GPU
print("๐งน Releasing GPU memory...")
pipe.to("cpu")
pipe.image_encoder.to("cpu")
pipe.image_proj_model.to("cpu")
pipe.FacialEncoder.to("cpu")
bise_net.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ====================================================================================
# Beautiful Gradio Interface
# ====================================================================================
# Get template images
preset_templates = glob.glob("./images/templates/*.png") + glob.glob("./images/templates/*.jpg")
# Custom CSS for beautiful interface
custom_css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.main-title {
text-align: center;
font-size: 2.5em;
font-weight: 700;
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 1em;
}
.subtitle {
text-align: center;
font-size: 1.1em;
color: #666;
margin-bottom: 2em;
}
.section-header {
font-size: 1.3em;
font-weight: 600;
margin: 1em 0 0.5em 0;
color: #333;
}
.info-box {
background: #f8f9fa;
border-left: 4px solid #667eea;
padding: 1em;
margin: 1em 0;
border-radius: 4px;
}
.generate-btn {
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-size: 1.1em !important;
font-weight: 600 !important;
padding: 0.8em 2em !important;
border-radius: 8px !important;
}
.gallery-item {
border-radius: 8px;
overflow: hidden;
}
"""
# Template prompts with better organization
template_prompts = [
("๐ฐ Wedding", "A woman in an elegant wedding dress, professional photography"),
("๐ Royalty", "A person as royalty, sitting on throne in gorgeous palace, regal attire"),
("๐๏ธ Beach", "A person sitting at the beach with beautiful sunset, relaxed atmosphere"),
("๐ฎ Officer", "A person as police officer, professional uniform, half body shot"),
("โต Sailor", "A person as sailor, on boat deck above ocean, nautical uniform"),
("๐ง Music", "A person wearing headphones, listening to music, modern setting"),
("๐ Firefighter", "A person as firefighter, professional gear, half body shot"),
("๐ผ Business", "A person in business attire, professional corporate environment"),
("๐จ Artist", "A person as artist in studio, creative atmosphere, artistic clothing"),
("๐ฌ Scientist", "A person as scientist in laboratory, lab coat, professional setting"),
]
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="ConsistentID-SDXL") as demo:
# Header
gr.HTML("""
<div class="main-title">โจ ConsistentID-SDXL Demo โจ</div>
<div class="subtitle">
High-fidelity portrait generation with consistent identity preservation
</div>
""")
gr.Markdown("""
<div style='text-align: center; margin-bottom: 2em;'>
<a href='https://github.com/JackAILab/ConsistentID' target='_blank' style='text-decoration: none;'>
โญ Star us on GitHub
</a> |
<a href='https://arxiv.org/abs/2404.16771' target='_blank' style='text-decoration: none;'>
๐ Read the Paper
</a>
</div>
""")
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
gr.HTML("<div class='section-header'>๐ธ Input Image</div>")
model_selected_tab = gr.Number(value=0, visible=False)
with gr.Tabs() as image_tabs:
with gr.Tab("๐ผ๏ธ Templates") as template_tab:
template_gallery = gr.Gallery(
value=[(img, img) for img in preset_templates],
columns=4,
rows=2,
height=300,
object_fit="cover",
show_label=False,
elem_classes="gallery-item"
)
selected_template = gr.Textbox(visible=False)
def select_template(evt: gr.SelectData):
return preset_templates[evt.index]
template_gallery.select(select_template, None, selected_template)
with gr.Tab("๐ค Upload") as upload_tab:
custom_image = gr.Image(
label="Upload your image",
type="numpy",
height=300
)
template_tab.select(fn=lambda: 0, inputs=[], outputs=[model_selected_tab])
upload_tab.select(fn=lambda: 1, inputs=[], outputs=[model_selected_tab])
gr.HTML("<div class='section-header'>โ๏ธ Prompt</div>")
prompt_selected_tab = gr.Number(value=0, visible=False)
with gr.Tabs() as prompt_tabs:
with gr.Tab("๐ Templates") as template_prompt_tab:
prompt_dropdown = gr.Dropdown(
choices=[f"{icon} {name}" for icon, name in template_prompts],
value="๐ฎ Officer",
label="Choose a style",
scale=1
)
# Hidden textbox to store actual prompt
prompt_mapping = {f"{icon} {name}": prompt for (icon, name), (_, prompt) in zip([(icon, name) for icon, name in template_prompts], template_prompts)}
prompt_selected = gr.Textbox(value=template_prompts[3][1], visible=False)
def update_prompt(choice):
for (icon, name), (_, prompt) in zip([(icon, name) for icon, name in template_prompts], template_prompts):
if f"{icon} {name}" == choice:
return prompt
return template_prompts[0][1]
prompt_dropdown.change(update_prompt, inputs=[prompt_dropdown], outputs=[prompt_selected])
with gr.Tab("โ๏ธ Custom") as custom_prompt_tab:
custom_prompt = gr.Textbox(
label="Your prompt",
placeholder="A person wearing a santa hat, festive atmosphere...",
lines=3
)
custom_negative = gr.Textbox(
label="Negative prompt (optional)",
placeholder="blurry, low quality...",
lines=2
)
template_prompt_tab.select(fn=lambda: 0, inputs=[], outputs=[prompt_selected_tab])
custom_prompt_tab.select(fn=lambda: 1, inputs=[], outputs=[prompt_selected_tab])
gr.HTML("<div class='section-header'>โ๏ธ Generation Settings</div>")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=1280,
value=896,
step=64
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1280,
value=1152,
step=64
)
with gr.Row():
num_steps = gr.Slider(
label="Steps",
minimum=20,
maximum=50,
value=30,
step=1
)
merge_steps = gr.Slider(
label="Merge Step",
minimum=10,
maximum=40,
value=20,
step=1
)
seed = gr.Slider(
label="๐ฒ Seed",
minimum=0,
maximum=2147483647,
value=42,
step=1
)
generate_btn = gr.Button(
"๐จ Generate Image",
variant="primary",
size="lg",
elem_classes="generate-btn"
)
# Right column - Output
with gr.Column(scale=1):
gr.HTML("<div class='section-header'>๐ผ๏ธ Generated Result</div>")
output_image = gr.Image(
label="Output",
height=600,
show_label=False
)
gr.HTML("""
<div class='info-box'>
<h4>๐ก Tips for Best Results:</h4>
<ul>
<li>โ
Use clear face images with good lighting</li>
<li>โ
Faces should be clearly visible and not too small</li>
<li>โ
Use "man" or "woman" instead of "person" in prompts</li>
<li>โฑ๏ธ Generation takes 1-3 minutes with ZeroGPU</li>
</ul>
</div>
""")
gr.Markdown("""
<div style='text-align: center; margin-top: 2em; color: #666; font-size: 0.9em;'>
Powered by ConsistentID-SDXL |
<a href='https://huggingface.co/JackAILab/ConsistentID' target='_blank'>Model Card</a>
</div>
""")
# Connect the button
generate_btn.click(
fn=generate_image,
inputs=[
selected_template,
custom_image,
custom_prompt,
custom_negative,
prompt_selected,
model_selected_tab,
prompt_selected_tab,
width,
height,
merge_steps,
seed,
num_steps
],
outputs=output_image
)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch() |