Spaces:
Running
Running
File size: 14,464 Bytes
14e0ea5 c807fbd 14e0ea5 7f53fb7 c807fbd 14e0ea5 c807fbd 14e0ea5 c807fbd 14e0ea5 80e2f77 14e0ea5 1b6a46e 80e2f77 1b6a46e 80e2f77 1b6a46e ac72b31 14e0ea5 c807fbd f0a807a c807fbd f0a807a c807fbd f0a807a c807fbd f0a807a c807fbd 14e0ea5 c807fbd 14e0ea5 c807fbd 14e0ea5 c807fbd 14e0ea5 c807fbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import pandas as pd
import re
from pathlib import Path
from typing import List, Tuple, Optional
import json
import math
import os
from typing import Dict
class DataManager:
def __init__(self, data_dir: str):
self.data_dir = Path(data_dir)
self.master_df = self._load_all_data()
def _load_old_format_folder(self, period_dir: Path) -> pd.DataFrame:
all_xlsx_data = []
period = period_dir.name
for file_path in period_dir.iterdir():
if file_path.suffix != ".xlsx":
continue
model_group = file_path.stem
xls = pd.read_excel(file_path, sheet_name=None)
for sheet_name, df in xls.items():
if df.empty:
continue
df = self._clean_dataframe(df)
df["Period"] = period
df["Metric"] = sheet_name
df["Model Group"] = model_group
all_xlsx_data.append(df)
return all_xlsx_data
def _load_new_format_folder(self, period_dir: Path) -> pd.DataFrame:
raw_records = []
period = period_dir.name
for file_path in period_dir.rglob("*.json"):
with open(file_path, "r", encoding="utf-8") as f:
data = json.load(f)
full_path = data["model_name_or_path"]
model_name = full_path.split("/")[-1].replace(".pth", "")
params = data["parameters count"]
data_path = data["data_path"]
source_col = data_path.split("-")[-1]
neg_log_prob = data["neg_log_prob_sum"]
avg_char = data["avg character count"]
avg_bytes = data["avg bytes"]
metrics = {}
metrics["cr"] = data["compression_rate"]
metrics["bpc"] = (neg_log_prob / avg_char) * (1 / math.log(2))
metrics["bpb"] = (neg_log_prob / avg_bytes) * (1 / math.log(2))
for metric_type, value in metrics.items():
if value is not None:
raw_records.append(
{
"Name": model_name,
"Params (B)": params,
"Period": period,
"Metric": metric_type,
"Model Group": "other",
"Source": source_col,
"Value": value,
}
)
if not raw_records:
return []
df_long = pd.DataFrame(raw_records)
df_wide = df_long.pivot_table(
index=["Name", "Params (B)", "Period", "Metric", "Model Group"],
columns="Source",
values="Value",
).reset_index()
df_wide.columns.name = None
def assign_group(p):
if p >= 20:
return "20b+"
if p >= 12:
return "14b"
if p >= 9:
return "9b"
if p >= 6:
return "7b"
if p >= 2.5:
return "3b"
if p >= 1:
return "1b5"
return "other"
df_wide["Model Group"] = df_wide["Params (B)"].apply(assign_group)
metadata_cols = ["Name", "Params (B)", "Period", "Metric", "Model Group"]
new_columns = {}
for col in df_wide.columns:
if col not in metadata_cols:
new_columns[col] = col.replace("_", " ")
df_wide = df_wide.rename(columns=new_columns)
return [df_wide]
def _load_all_data(self) -> pd.DataFrame:
all_records = []
if not self.data_dir.exists():
print(f"Warning: Directory {self.data_dir} does not exist.")
return pd.DataFrame()
period_dirs = [d for d in self.data_dir.iterdir() if d.is_dir() and re.match(r"^\d{4}-\d{2}$", d.name)]
for period_dir in period_dirs:
if period_dir.name <= "2025-11":
all_records.extend(self._load_old_format_folder(period_dir))
else:
all_records.extend(self._load_new_format_folder(period_dir))
if not all_records:
return pd.DataFrame()
final_df = pd.concat(all_records, ignore_index=True)
exclude_cols = ["Name", "Period", "Metric", "Model Group"]
numeric_cols = [c for c in final_df.columns if c not in exclude_cols]
for col in numeric_cols:
final_df[col] = pd.to_numeric(final_df[col], errors="coerce")
return final_df
def _clean_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
df = df.dropna(axis=1, how="all")
new_columns = []
for col in df.columns:
col_str = str(col)
if "Parameters" in col_str:
new_columns.append("Params (B)")
elif col_str == "Average (The lower the better)":
new_columns.append("Average (lower=better)")
else:
new_columns.append(col_str.rsplit("_", maxsplit=1)[0].replace("\u200b", "")) # 去除_202xxxxx后缀
df.columns = new_columns
column_mapping = {col: col.replace("_", " ") for col in df.columns}
df = df.rename(columns=column_mapping)
return df
def get_available_periods(self) -> List[str]:
"""返回所有可用的时间周期,已排序,从旧到新"""
if self.master_df.empty:
return []
return sorted(self.master_df["Period"].unique().tolist())
def get_available_columns(self, period: str) -> List[str]:
"""获取特定时间段内的数据列(排除元数据列和全部为NaN的列)"""
if self.master_df.empty:
return []
subset = self.master_df[self.master_df["Period"] == period]
if subset.empty:
return []
metadata_cols = ["Name", "Params (B)", "Period", "Metric", "Model Group", "Average (lower=better)"]
return [c for c in subset.columns if c not in metadata_cols and not subset[c].isna().all()]
def query(
self,
period: str,
metric_code: str,
param_range: Tuple[float, float],
model_groups: Optional[List[str]] = None,
visible_columns: Optional[List[str]] = None,
) -> pd.DataFrame:
"""
统一查询接口。
Args:
period: 时间周期 (e.g. "2025-12")
metric_display_name: bpc, bpb, cr
param_range: 参数量范围元组 (min, max)
model_groups: (可选) 文件名列表,如 ['14b', '7b']
visible_columns: (可选) 需要参与计算平均值的列名列表
"""
mask = (
(self.master_df["Period"] == period)
& (self.master_df["Metric"] == metric_code)
& (self.master_df["Params (B)"].between(param_range[0], param_range[1]))
)
if model_groups is not None:
if len(model_groups) == 0:
return pd.DataFrame()
mask = mask & (self.master_df["Model Group"].isin(model_groups))
filtered_df = self.master_df.loc[mask].copy()
if filtered_df.empty:
return filtered_df
# 始终排除的列
exclude_cols = ["Period", "Metric", "Model Group"]
# 始终保留的列
metadata_cols = ["Name", "Params (B)", "Average (lower=better)"]
if visible_columns is not None:
valid_visible_cols = [c for c in visible_columns if c in filtered_df.columns]
columns_to_keep = metadata_cols + valid_visible_cols
cols_for_average = valid_visible_cols
else:
all_cols = [c for c in filtered_df.columns if c not in exclude_cols]
columns_to_keep = all_cols
cols_for_average = [c for c in all_cols if c not in metadata_cols]
if not cols_for_average:
return pd.DataFrame()
filtered_df["Average (lower=better)"] = filtered_df[cols_for_average].mean(axis=1).round(3)
columns_to_keep = [c for c in columns_to_keep if c not in exclude_cols]
columns_to_keep = list(dict.fromkeys(columns_to_keep))
filtered_df = filtered_df[columns_to_keep]
if "Name" in filtered_df.columns:
filtered_df["Name"] = filtered_df["Name"].apply(lambda x: x.replace(".pth", ""))
filtered_df = filtered_df.sort_values(by="Average (lower=better)", ascending=True, kind="mergesort", na_position="last").reset_index(
drop=True
)
fixed_cols = ["Name", "Params (B)", "Average (lower=better)"]
column_priority = [
# 代码 (Code)
"github cpp",
"github javascript",
"github python",
"github markdown",
# 科学 (Science)
"arxiv math",
"arxiv physics",
"arxiv cs",
# 世界知识 (Knowledge)
"wikipedia english",
"bbc news",
"ao3 english",
]
existing_cols = filtered_df.columns.tolist()
ordered_cols = []
for col in fixed_cols:
if col in existing_cols:
ordered_cols.append(col)
for col in column_priority:
if col in existing_cols and col not in ordered_cols:
ordered_cols.append(col)
for col in existing_cols:
if col not in ordered_cols:
ordered_cols.append(col)
filtered_df = filtered_df[ordered_cols]
return filtered_df
class LongContextDataManager:
def __init__(self, data_dir: str):
self.data_dir = data_dir
# { period: { "Display Name": "full_path" } }
self.period_file_map = {}
# { period: { "Model Name": ["path1", "path2"] } }
self.period_model_map = {}
# { period: { "Dataset Name": set(["path1", "path2"]) } }
self.period_dataset_map = {}
# { period: { "Model Name": { "Dataset Name": ["path1", "path2"] } } }
self.period_model_dataset_map = {}
self._scan_directories()
def _scan_directories(self):
for root, dirs, files in os.walk(self.data_dir):
json_files = [f for f in files if f.endswith(".json")]
if json_files:
period = os.path.basename(root)
if period not in self.period_file_map:
self.period_file_map[period] = {}
self.period_model_map[period] = {}
self.period_dataset_map[period] = {}
self.period_model_dataset_map[period] = {}
for jf in json_files:
full_path = os.path.join(root, jf)
with open(full_path, "r", encoding="utf-8") as f:
meta = json.load(f)
model_name = meta.get("model_name_or_path", jf.replace(".json", "")).split("/")[-1].replace(".pth", "")
data_path = meta.get("data_path", "").replace("UncheatableEval-", "")
dataset_name = data_path.split("/")[-1] if data_path else "Unknown"
file_display_label = f"{model_name}-{dataset_name}"
print(file_display_label)
self.period_file_map[period][file_display_label] = full_path
if model_name not in self.period_model_map[period]:
self.period_model_map[period][model_name] = []
self.period_model_map[period][model_name].append(full_path)
if dataset_name not in self.period_dataset_map[period]:
self.period_dataset_map[period][dataset_name] = []
self.period_dataset_map[period][dataset_name].append(full_path)
if model_name not in self.period_model_dataset_map[period]:
self.period_model_dataset_map[period][model_name] = {}
if dataset_name not in self.period_model_dataset_map[period][model_name]:
self.period_model_dataset_map[period][model_name][dataset_name] = []
self.period_model_dataset_map[period][model_name][dataset_name].append(full_path)
def get_available_periods(self):
return sorted(list(self.period_file_map.keys()))
def get_file_choices(self, period):
"""返回 [(Display Name, Full Path), ...]"""
if period not in self.period_file_map:
return []
return [(k, v) for k, v in self.period_file_map[period].items()]
def get_model_choices(self, period):
"""返回 [(Model Name, Model Name), ...]"""
if period not in self.period_model_map:
return []
return [(k, k) for k in self.period_model_map[period].keys()]
def get_paths_for_model(self, period, model_name):
return self.period_model_map.get(period, {}).get(model_name, [])
def get_dataset_choices(self, period):
"""返回某个period下的所有数据集列表 [(Dataset Name, Dataset Name), ...]"""
if period not in self.period_dataset_map:
return []
return [(k, k) for k in sorted(self.period_dataset_map[period].keys())]
def get_paths_for_model_and_datasets(self, period, model_name, dataset_names):
"""根据模型名称和数据集名称列表,返回对应的文件路径列表"""
if period not in self.period_model_dataset_map:
return []
if model_name not in self.period_model_dataset_map[period]:
return []
paths = []
for dataset_name in dataset_names:
if dataset_name in self.period_model_dataset_map[period][model_name]:
paths.extend(self.period_model_dataset_map[period][model_name][dataset_name])
return paths
if __name__ == "__main__":
# dm = DataManager("data")
# periods = dm.get_available_periods()
# print(f"Total records loaded: {len(dm.master_df)}")
# print(f"Available periods: {periods}")
# print(f"Available columns: {dm.get_available_columns('2025-11')}")
# result = dm.query(
# period="2025-11",
# metric_code="cr",
# param_range=(0, 20),
# model_groups=["7b"],
# visible_columns=["wikipedia_english"],
# )
# print(result.head(20))
lcm = LongContextDataManager("longctx_data")
|