File size: 14,464 Bytes
14e0ea5
 
 
 
 
 
c807fbd
 
14e0ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f53fb7
 
c807fbd
14e0ea5
c807fbd
14e0ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c807fbd
 
 
14e0ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80e2f77
14e0ea5
 
1b6a46e
 
 
 
80e2f77
 
1b6a46e
80e2f77
1b6a46e
ac72b31
14e0ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c807fbd
 
 
 
 
 
 
f0a807a
 
 
 
c807fbd
 
 
 
 
 
 
 
 
 
f0a807a
 
c807fbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0a807a
 
 
 
 
 
 
 
 
 
c807fbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0a807a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c807fbd
14e0ea5
 
c807fbd
 
 
 
 
 
14e0ea5
c807fbd
 
 
 
 
 
 
14e0ea5
c807fbd
14e0ea5
c807fbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import pandas as pd
import re
from pathlib import Path
from typing import List, Tuple, Optional
import json
import math
import os
from typing import Dict


class DataManager:
    def __init__(self, data_dir: str):
        self.data_dir = Path(data_dir)
        self.master_df = self._load_all_data()

    def _load_old_format_folder(self, period_dir: Path) -> pd.DataFrame:
        all_xlsx_data = []
        period = period_dir.name

        for file_path in period_dir.iterdir():
            if file_path.suffix != ".xlsx":
                continue

            model_group = file_path.stem

            xls = pd.read_excel(file_path, sheet_name=None)

            for sheet_name, df in xls.items():
                if df.empty:
                    continue

                df = self._clean_dataframe(df)

                df["Period"] = period
                df["Metric"] = sheet_name
                df["Model Group"] = model_group

                all_xlsx_data.append(df)

        return all_xlsx_data

    def _load_new_format_folder(self, period_dir: Path) -> pd.DataFrame:
        raw_records = []
        period = period_dir.name

        for file_path in period_dir.rglob("*.json"):
            with open(file_path, "r", encoding="utf-8") as f:
                data = json.load(f)

            full_path = data["model_name_or_path"]
            model_name = full_path.split("/")[-1].replace(".pth", "")

            params = data["parameters count"]

            data_path = data["data_path"]
            source_col = data_path.split("-")[-1]

            neg_log_prob = data["neg_log_prob_sum"]
            avg_char = data["avg character count"]
            avg_bytes = data["avg bytes"]

            metrics = {}

            metrics["cr"] = data["compression_rate"]
            metrics["bpc"] = (neg_log_prob / avg_char) * (1 / math.log(2))
            metrics["bpb"] = (neg_log_prob / avg_bytes) * (1 / math.log(2))

            for metric_type, value in metrics.items():
                if value is not None:
                    raw_records.append(
                        {
                            "Name": model_name,
                            "Params (B)": params,
                            "Period": period,
                            "Metric": metric_type,
                            "Model Group": "other",
                            "Source": source_col,
                            "Value": value,
                        }
                    )

        if not raw_records:
            return []

        df_long = pd.DataFrame(raw_records)
        df_wide = df_long.pivot_table(
            index=["Name", "Params (B)", "Period", "Metric", "Model Group"],
            columns="Source",
            values="Value",
        ).reset_index()

        df_wide.columns.name = None

        def assign_group(p):
            if p >= 20:
                return "20b+"
            if p >= 12:
                return "14b"
            if p >= 9:
                return "9b"
            if p >= 6:
                return "7b"
            if p >= 2.5:
                return "3b"
            if p >= 1:
                return "1b5"
            return "other"

        df_wide["Model Group"] = df_wide["Params (B)"].apply(assign_group)

        metadata_cols = ["Name", "Params (B)", "Period", "Metric", "Model Group"]
        new_columns = {}
        for col in df_wide.columns:
            if col not in metadata_cols:
                new_columns[col] = col.replace("_", " ")

        df_wide = df_wide.rename(columns=new_columns)

        return [df_wide]

    def _load_all_data(self) -> pd.DataFrame:
        all_records = []

        if not self.data_dir.exists():
            print(f"Warning: Directory {self.data_dir} does not exist.")
            return pd.DataFrame()

        period_dirs = [d for d in self.data_dir.iterdir() if d.is_dir() and re.match(r"^\d{4}-\d{2}$", d.name)]

        for period_dir in period_dirs:
            if period_dir.name <= "2025-11":
                all_records.extend(self._load_old_format_folder(period_dir))
            else:
                all_records.extend(self._load_new_format_folder(period_dir))

        if not all_records:
            return pd.DataFrame()

        final_df = pd.concat(all_records, ignore_index=True)

        exclude_cols = ["Name", "Period", "Metric", "Model Group"]
        numeric_cols = [c for c in final_df.columns if c not in exclude_cols]
        for col in numeric_cols:
            final_df[col] = pd.to_numeric(final_df[col], errors="coerce")

        return final_df

    def _clean_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
        df = df.dropna(axis=1, how="all")
        new_columns = []
        for col in df.columns:
            col_str = str(col)
            if "Parameters" in col_str:
                new_columns.append("Params (B)")
            elif col_str == "Average (The lower the better)":
                new_columns.append("Average (lower=better)")
            else:
                new_columns.append(col_str.rsplit("_", maxsplit=1)[0].replace("\u200b", ""))  # 去除_202xxxxx后缀
        df.columns = new_columns
        column_mapping = {col: col.replace("_", " ") for col in df.columns}
        df = df.rename(columns=column_mapping)
        return df

    def get_available_periods(self) -> List[str]:
        """返回所有可用的时间周期,已排序,从旧到新"""
        if self.master_df.empty:
            return []
        return sorted(self.master_df["Period"].unique().tolist())

    def get_available_columns(self, period: str) -> List[str]:
        """获取特定时间段内的数据列(排除元数据列和全部为NaN的列)"""
        if self.master_df.empty:
            return []
        subset = self.master_df[self.master_df["Period"] == period]
        if subset.empty:
            return []

        metadata_cols = ["Name", "Params (B)", "Period", "Metric", "Model Group", "Average (lower=better)"]
        return [c for c in subset.columns if c not in metadata_cols and not subset[c].isna().all()]

    def query(
        self,
        period: str,
        metric_code: str,
        param_range: Tuple[float, float],
        model_groups: Optional[List[str]] = None,
        visible_columns: Optional[List[str]] = None,
    ) -> pd.DataFrame:
        """
        统一查询接口。

        Args:
            period: 时间周期 (e.g. "2025-12")
            metric_display_name: bpc, bpb, cr
            param_range: 参数量范围元组 (min, max)
            model_groups: (可选) 文件名列表,如 ['14b', '7b']
            visible_columns: (可选) 需要参与计算平均值的列名列表
        """

        mask = (
            (self.master_df["Period"] == period)
            & (self.master_df["Metric"] == metric_code)
            & (self.master_df["Params (B)"].between(param_range[0], param_range[1]))
        )

        if model_groups is not None:
            if len(model_groups) == 0:
                return pd.DataFrame()
            mask = mask & (self.master_df["Model Group"].isin(model_groups))

        filtered_df = self.master_df.loc[mask].copy()

        if filtered_df.empty:
            return filtered_df

        # 始终排除的列
        exclude_cols = ["Period", "Metric", "Model Group"]
        # 始终保留的列
        metadata_cols = ["Name", "Params (B)", "Average (lower=better)"]

        if visible_columns is not None:
            valid_visible_cols = [c for c in visible_columns if c in filtered_df.columns]
            columns_to_keep = metadata_cols + valid_visible_cols
            cols_for_average = valid_visible_cols
        else:
            all_cols = [c for c in filtered_df.columns if c not in exclude_cols]
            columns_to_keep = all_cols
            cols_for_average = [c for c in all_cols if c not in metadata_cols]

        if not cols_for_average:
            return pd.DataFrame()

        filtered_df["Average (lower=better)"] = filtered_df[cols_for_average].mean(axis=1).round(3)
        columns_to_keep = [c for c in columns_to_keep if c not in exclude_cols]
        columns_to_keep = list(dict.fromkeys(columns_to_keep))
        filtered_df = filtered_df[columns_to_keep]

        if "Name" in filtered_df.columns:
            filtered_df["Name"] = filtered_df["Name"].apply(lambda x: x.replace(".pth", ""))

        filtered_df = filtered_df.sort_values(by="Average (lower=better)", ascending=True, kind="mergesort", na_position="last").reset_index(
            drop=True
        )

        fixed_cols = ["Name", "Params (B)", "Average (lower=better)"]
        column_priority = [
            # 代码 (Code)
            "github cpp",
            "github javascript",
            "github python",
            "github markdown",
            # 科学 (Science)
            "arxiv math",
            "arxiv physics",
            "arxiv cs",
            # 世界知识 (Knowledge)
            "wikipedia english",
            "bbc news",
            "ao3 english",
        ]
        existing_cols = filtered_df.columns.tolist()
        ordered_cols = []
        for col in fixed_cols:
            if col in existing_cols:
                ordered_cols.append(col)
        for col in column_priority:
            if col in existing_cols and col not in ordered_cols:
                ordered_cols.append(col)
        for col in existing_cols:
            if col not in ordered_cols:
                ordered_cols.append(col)
        filtered_df = filtered_df[ordered_cols]

        return filtered_df


class LongContextDataManager:
    def __init__(self, data_dir: str):
        self.data_dir = data_dir
        # { period: { "Display Name": "full_path" } }
        self.period_file_map = {}
        # { period: { "Model Name": ["path1", "path2"] } }
        self.period_model_map = {}
        # { period: { "Dataset Name": set(["path1", "path2"]) } }
        self.period_dataset_map = {}
        # { period: { "Model Name": { "Dataset Name": ["path1", "path2"] } } }
        self.period_model_dataset_map = {}
        self._scan_directories()

    def _scan_directories(self):
        for root, dirs, files in os.walk(self.data_dir):
            json_files = [f for f in files if f.endswith(".json")]
            if json_files:
                period = os.path.basename(root)
                if period not in self.period_file_map:
                    self.period_file_map[period] = {}
                    self.period_model_map[period] = {}
                    self.period_dataset_map[period] = {}
                    self.period_model_dataset_map[period] = {}

                for jf in json_files:
                    full_path = os.path.join(root, jf)

                    with open(full_path, "r", encoding="utf-8") as f:
                        meta = json.load(f)
                        model_name = meta.get("model_name_or_path", jf.replace(".json", "")).split("/")[-1].replace(".pth", "")
                        data_path = meta.get("data_path", "").replace("UncheatableEval-", "")
                        dataset_name = data_path.split("/")[-1] if data_path else "Unknown"

                        file_display_label = f"{model_name}-{dataset_name}"
                        print(file_display_label)

                        self.period_file_map[period][file_display_label] = full_path

                        if model_name not in self.period_model_map[period]:
                            self.period_model_map[period][model_name] = []
                        self.period_model_map[period][model_name].append(full_path)

                        if dataset_name not in self.period_dataset_map[period]:
                            self.period_dataset_map[period][dataset_name] = []
                        self.period_dataset_map[period][dataset_name].append(full_path)

                        if model_name not in self.period_model_dataset_map[period]:
                            self.period_model_dataset_map[period][model_name] = {}
                        if dataset_name not in self.period_model_dataset_map[period][model_name]:
                            self.period_model_dataset_map[period][model_name][dataset_name] = []
                        self.period_model_dataset_map[period][model_name][dataset_name].append(full_path)

    def get_available_periods(self):
        return sorted(list(self.period_file_map.keys()))

    def get_file_choices(self, period):
        """返回 [(Display Name, Full Path), ...]"""
        if period not in self.period_file_map:
            return []
        return [(k, v) for k, v in self.period_file_map[period].items()]

    def get_model_choices(self, period):
        """返回 [(Model Name, Model Name), ...]"""
        if period not in self.period_model_map:
            return []
        return [(k, k) for k in self.period_model_map[period].keys()]

    def get_paths_for_model(self, period, model_name):
        return self.period_model_map.get(period, {}).get(model_name, [])

    def get_dataset_choices(self, period):
        """返回某个period下的所有数据集列表 [(Dataset Name, Dataset Name), ...]"""
        if period not in self.period_dataset_map:
            return []
        return [(k, k) for k in sorted(self.period_dataset_map[period].keys())]

    def get_paths_for_model_and_datasets(self, period, model_name, dataset_names):
        """根据模型名称和数据集名称列表,返回对应的文件路径列表"""
        if period not in self.period_model_dataset_map:
            return []
        if model_name not in self.period_model_dataset_map[period]:
            return []

        paths = []
        for dataset_name in dataset_names:
            if dataset_name in self.period_model_dataset_map[period][model_name]:
                paths.extend(self.period_model_dataset_map[period][model_name][dataset_name])
        return paths


if __name__ == "__main__":

    # dm = DataManager("data")
    # periods = dm.get_available_periods()

    # print(f"Total records loaded: {len(dm.master_df)}")
    # print(f"Available periods: {periods}")
    # print(f"Available columns: {dm.get_available_columns('2025-11')}")

    # result = dm.query(
    #     period="2025-11",
    #     metric_code="cr",
    #     param_range=(0, 20),
    #     model_groups=["7b"],
    #     visible_columns=["wikipedia_english"],
    # )

    # print(result.head(20))

    lcm = LongContextDataManager("longctx_data")