https://www.kaggle.com/code/kaiquanmah/01a-kaggle-ollama-llama3-2?scriptVersionId=241139873 time=2025-05-22T03:18:37.534Z level=INFO source=server.go:135 msg="system memory" total="31.4 GiB" free="30.1 GiB" free_swap="0 B" time=2025-05-22T03:18:37.534Z level=INFO source=server.go:168 msg=offload library=cpu layers.requested=-1 layers.model=29 layers.offload=0 layers.split="" memory.available="[30.1 GiB]" memory.gpu_overhead="0 B" memory.required.full="3.5 GiB" memory.required.partial="0 B" memory.required.kv="896.0 MiB" memory.required.allocations="[3.5 GiB]" memory.weights.total="1.9 GiB" memory.weights.repeating="1.6 GiB" memory.weights.nonrepeating="308.2 MiB" memory.graph.full="424.0 MiB" memory.graph.partial="570.7 MiB" llama_model_loader: loaded meta data with 30 key-value pairs and 255 tensors from /root/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Llama 3.2 3B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Llama-3.2 llama_model_loader: - kv 5: general.size_label str = 3B llama_model_loader: - kv 6: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam... llama_model_loader: - kv 7: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ... llama_model_loader: - kv 8: llama.block_count u32 = 28 llama_model_loader: - kv 9: llama.context_length u32 = 131072 llama_model_loader: - kv 10: llama.embedding_length u32 = 3072 llama_model_loader: - kv 11: llama.feed_forward_length u32 = 8192 llama_model_loader: - kv 12: llama.attention.head_count u32 = 24 llama_model_loader: - kv 13: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 14: llama.rope.freq_base f32 = 500000.000000 llama_model_loader: - kv 15: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 16: llama.attention.key_length u32 = 128 llama_model_loader: - kv 17: llama.attention.value_length u32 = 128 llama_model_loader: - kv 18: general.file_type u32 = 15 llama_model_loader: - kv 19: llama.vocab_size u32 = 128256 llama_model_loader: - kv 20: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 21: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 22: tokenizer.ggml.pre str = llama-bpe llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 25: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "... llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 128000 llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 128009 llama_model_loader: - kv 28: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ... llama_model_loader: - kv 29: general.quantization_version u32 = 2 llama_model_loader: - type f32: 58 tensors llama_model_loader: - type q4_K: 168 tensors llama_model_loader: - type q6_K: 29 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 1.87 GiB (5.01 BPW) load: special tokens cache size = 256 load: token to piece cache size = 0.7999 MB print_info: arch = llama print_info: vocab_only = 1 print_info: model type = ?B print_info: model params = 3.21 B print_info: general.name = Llama 3.2 3B Instruct print_info: vocab type = BPE print_info: n_vocab = 128256 print_info: n_merges = 280147 print_info: BOS token = 128000 '<|begin_of_text|>' print_info: EOS token = 128009 '<|eot_id|>' print_info: EOT token = 128009 '<|eot_id|>' print_info: EOM token = 128008 '<|eom_id|>' print_info: LF token = 198 'Ċ' print_info: EOG token = 128008 '<|eom_id|>' print_info: EOG token = 128009 '<|eot_id|>' print_info: max token length = 256 llama_model_load: vocab only - skipping tensors time=2025-05-22T03:18:38.186Z level=INFO source=server.go:431 msg="starting llama server" cmd="/usr/local/bin/ollama runner --model /root/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff --ctx-size 8192 --batch-size 512 --threads 2 --no-mmap --parallel 2 --port 38637" time=2025-05-22T03:18:38.187Z level=INFO source=sched.go:472 msg="loaded runners" count=1 time=2025-05-22T03:18:38.187Z level=INFO source=server.go:591 msg="waiting for llama runner to start responding" time=2025-05-22T03:18:38.188Z level=INFO source=server.go:625 msg="waiting for server to become available" status="llm server not responding" time=2025-05-22T03:18:38.217Z level=INFO source=runner.go:815 msg="starting go runner" load_backend: loaded CPU backend from /usr/local/lib/ollama/libggml-cpu-haswell.so time=2025-05-22T03:18:38.228Z level=INFO source=ggml.go:104 msg=system CPU.0.SSE3=1 CPU.0.SSSE3=1 CPU.0.AVX=1 CPU.0.AVX2=1 CPU.0.F16C=1 CPU.0.FMA=1 CPU.0.BMI2=1 CPU.0.LLAMAFILE=1 CPU.1.LLAMAFILE=1 compiler=cgo(gcc) time=2025-05-22T03:18:38.234Z level=INFO source=runner.go:874 msg="Server listening on 127.0.0.1:38637" llama_model_loader: loaded meta data with 30 key-value pairs and 255 tensors from /root/.ollama/models/blobs/sha256-dde5aa3fc5ffc17176b5e8bdc82f587b24b2678c6c66101bf7da77af9f7ccdff (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Llama 3.2 3B Instruct llama_model_loader: - kv 3: general.finetune str = Instruct llama_model_loader: - kv 4: general.basename str = Llama-3.2 llama_model_loader: - kv 5: general.size_label str = 3B llama_model_loader: - kv 6: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam... llama_model_loader: - kv 7: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ... llama_model_loader: - kv 8: llama.block_count u32 = 28 llama_model_loader: - kv 9: llama.context_length u32 = 131072 llama_model_loader: - kv 10: llama.embedding_length u32 = 3072 llama_model_loader: - kv 11: llama.feed_forward_length u32 = 8192 llama_model_loader: - kv 12: llama.attention.head_count u32 = 24 llama_model_loader: - kv 13: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 14: llama.rope.freq_base f32 = 500000.000000 llama_model_loader: - kv 15: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 16: llama.attention.key_length u32 = 128 llama_model_loader: - kv 17: llama.attention.value_length u32 = 128 llama_model_loader: - kv 18: general.file_type u32 = 15 llama_model_loader: - kv 19: llama.vocab_size u32 = 128256 llama_model_loader: - kv 20: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 21: tokenizer.ggml.model str = gpt2 llama_model_loader: - kv 22: tokenizer.ggml.pre str = llama-bpe llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ... llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... llama_model_loader: - kv 25: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "... llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 128000 llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 128009 llama_model_loader: - kv 28: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ... llama_model_loader: - kv 29: general.quantization_version u32 = 2 llama_model_loader: - type f32: 58 tensors llama_model_loader: - type q4_K: 168 tensors llama_model_loader: - type q6_K: 29 tensors print_info: file format = GGUF V3 (latest) print_info: file type = Q4_K - Medium print_info: file size = 1.87 GiB (5.01 BPW) time=2025-05-22T03:18:38.440Z level=INFO source=server.go:625 msg="waiting for server to become available" status="llm server loading model" load: special tokens cache size = 256 load: token to piece cache size = 0.7999 MB print_info: arch = llama print_info: vocab_only = 0 print_info: n_ctx_train = 131072 print_info: n_embd = 3072 print_info: n_layer = 28 print_info: n_head = 24 print_info: n_head_kv = 8 print_info: n_rot = 128 print_info: n_swa = 0 print_info: n_swa_pattern = 1 print_info: n_embd_head_k = 128 print_info: n_embd_head_v = 128 print_info: n_gqa = 3 print_info: n_embd_k_gqa = 1024 print_info: n_embd_v_gqa = 1024 print_info: f_norm_eps = 0.0e+00 print_info: f_norm_rms_eps = 1.0e-05 print_info: f_clamp_kqv = 0.0e+00 print_info: f_max_alibi_bias = 0.0e+00 print_info: f_logit_scale = 0.0e+00 print_info: f_attn_scale = 0.0e+00 print_info: n_ff = 8192 print_info: n_expert = 0 print_info: n_expert_used = 0 print_info: causal attn = 1 print_info: pooling type = 0 print_info: rope type = 0 print_info: rope scaling = linear print_info: freq_base_train = 500000.0 print_info: freq_scale_train = 1 print_info: n_ctx_orig_yarn = 131072 print_info: rope_finetuned = unknown print_info: ssm_d_conv = 0 print_info: ssm_d_inner = 0 print_info: ssm_d_state = 0 print_info: ssm_dt_rank = 0 print_info: ssm_dt_b_c_rms = 0 print_info: model type = 3B print_info: model params = 3.21 B print_info: general.name = Llama 3.2 3B Instruct print_info: vocab type = BPE print_info: n_vocab = 128256 print_info: n_merges = 280147 print_info: BOS token = 128000 '<|begin_of_text|>' print_info: EOS token = 128009 '<|eot_id|>' print_info: EOT token = 128009 '<|eot_id|>' print_info: EOM token = 128008 '<|eom_id|>' print_info: LF token = 198 'Ċ' print_info: EOG token = 128008 '<|eom_id|>' print_info: EOG token = 128009 '<|eot_id|>' print_info: max token length = 256 load_tensors: loading model tensors, this can take a while... (mmap = false) load_tensors: CPU model buffer size = 1918.35 MiB llama_context: constructing llama_context llama_context: n_seq_max = 2 llama_context: n_ctx = 8192 llama_context: n_ctx_per_seq = 4096 llama_context: n_batch = 1024 llama_context: n_ubatch = 512 llama_context: causal_attn = 1 llama_context: flash_attn = 0 llama_context: freq_base = 500000.0 llama_context: freq_scale = 1 llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized llama_context: CPU output buffer size = 1.00 MiB llama_kv_cache_unified: kv_size = 8192, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1, padding = 32 llama_kv_cache_unified: CPU KV buffer size = 896.00 MiB llama_kv_cache_unified: KV self size = 896.00 MiB, K (f16): 448.00 MiB, V (f16): 448.00 MiB llama_context: CPU compute buffer size = 424.01 MiB llama_context: graph nodes = 958 llama_context: graph splits = 1 time=2025-05-22T03:18:44.220Z level=INFO source=server.go:630 msg="llama runner started in 6.03 seconds" [GIN] 2025/05/22 - 03:21:18 | 200 | 2m41s | 127.0.0.1 | POST "/api/chat" Processed 0 rows | Elapsed: 161.03s | ETA: 2106716.46s [GIN] 2025/05/22 - 03:21:39 | 200 | 3m2s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:22:15 | 200 | 3m38s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:22:15 | 200 | 3m38s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:23:02 | 200 | 4m24s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:23:02 | 200 | 4m25s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:23:45 | 200 | 5m7s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:24:05 | 200 | 5m27s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:24:32 | 200 | 3m14s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:24:55 | 200 | 3m15s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:25:22 | 200 | 3m7s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:25:45 | 200 | 3m29s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:26:08 | 200 | 3m6s | 127.0.0.1 | POST "/api/chat" [GIN] 2025/05/22 - 03:26:30 | 200 | 3m27s | 127.0.0.1 | POST "/api/chat"