Spaces:
Sleeping
Sleeping
| import transformers | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased") | |
| def predict_probs(model, text, | |
| labels=['World', 'Sports', 'Business', 'Sci/Tech']): | |
| with torch.no_grad(): | |
| tokens = tokenizer(text, padding="max_length", truncation=True, return_tensors='pt').to(device) | |
| logits = model(**tokens).logits | |
| probs = torch.nn.functional.softmax(logits)[0] | |
| return {labels[i]: float(probs[i]) for i in range(min(len(probs), len(labels)))} | |
| def load_model(labels_count=4): | |
| model = AutoModelForSequenceClassification.from_pretrained("pretrained_acc935/", num_labels=labels_count).to(device) | |
| return model | |
| __all__ = ['predict_probs', 'load_model'] |