File size: 9,087 Bytes
6c46c15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# app.py
import os
import math
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.models as models
from PIL import Image
import gradio as gr
from groq import Groq
from reportlab.lib.pagesizes import A4
from reportlab.pdfgen import canvas
# Load API Key
api_key = os.environ.get("GROQ_API_KEY")
if not api_key:
raise ValueError("GROQ_API_KEY not found in environment. Please add it in HF Space Secrets.")
client = Groq(api_key=api_key)
# ------------------------------
# Model: Soil Classifier
# ------------------------------
class SoilClassifier(nn.Module):
def __init__(self):
super(SoilClassifier, self).__init__()
self.base_model = models.resnet18(weights=None)
num_features = self.base_model.fc.in_features
self.base_model.fc = nn.Linear(num_features, 1)
def forward(self, x):
return self.base_model(x)
model = SoilClassifier()
model.base_model.load_state_dict(torch.load('soil_model.pth', map_location=torch.device('cpu')))
model.eval()
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# ------------------------------
# Shared report log
# ------------------------------
report_summary = []
# ------------------------------
# Soil Prediction Function
# ------------------------------
def predict_soil_type(image):
image = image.convert("RGB")
img_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = model(img_tensor)
raw_output = outputs.item()
prediction = torch.sigmoid(outputs).item()
result = f"Model Raw Output: {raw_output:.4f}"
report_summary.append(f"Soil Image Prediction: {result}")
return result
# ------------------------------
# AI Advisor
# ------------------------------
def ask_soil_region(query):
prompt = f"""You are GeoMate, a world-class geotechnical expert.
Answer the following query using global soil knowledge, latest construction practices, and foundation design standards.
Query: {query}"""
response = client.chat.completions.create(
model="llama-3.1-8b-instant",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content
# ------------------------------
# Classification System
# ------------------------------
def classify_soil(system, liquid_limit, plasticity_index, grain_size):
try:
result = ""
if system == "USCS":
if grain_size > 50:
result = "Gravel"
elif grain_size > 0.075:
result = "Sand"
else:
result = "Clay" if plasticity_index > 7 else "Silt"
elif system == "AASHTO":
if liquid_limit < 40 and plasticity_index < 10:
result = "A-1 or A-2 (Granular Soil)"
elif plasticity_index > 10:
result = "A-5 to A-7 (Silty/Clayey Soil)"
else:
result = "A-4 (Silt)"
else:
result = "Invalid system"
report_summary.append(f"Soil Classification: {result}")
return result
except Exception as e:
return f"Error: {e}"
# ------------------------------
# Engineering Calculations
# ------------------------------
def convert_pressure(val, unit):
val = float(val)
if unit == "psf":
return val * 0.04788
return val
def bearing_capacity_solver(q, Nq, S, B):
try:
q_converted = convert_pressure(q, S)
result = q_converted * float(Nq) * float(B)
report_summary.append(f"Bearing Capacity: {round(result, 2)} kN/m²")
return f"{round(result, 2)} kN/m²"
except Exception as e:
return f"Error: {e}"
def slope_stability_solver(c, phi, gamma, height):
try:
phi = math.radians(float(phi))
fs = (float(c) + float(gamma) * float(height) * math.tan(phi)) / (float(gamma) * float(height))
report_summary.append(f"Slope Stability Factor of Safety: {round(fs, 3)}")
return f"{round(fs, 3)} (Factor of Safety)"
except Exception as e:
return f"Error: {e}"
def consolidation_solver(delta_sigma, mv, H):
try:
settlement = float(mv) * float(delta_sigma) * float(H)
report_summary.append(f"Settlement: {round(settlement, 3)} m")
return f"{round(settlement, 3)} m"
except Exception as e:
return f"Error: {e}"
def seepage_solver(k, i, A):
try:
q = float(k) * float(i) * float(A)
report_summary.append(f"Seepage Discharge: {round(q, 4)} m³/s")
return f"{round(q, 4)} m³/s"
except Exception as e:
return f"Error: {e}"
def compaction_solver(W, V):
try:
dry_density = float(W) / float(V)
report_summary.append(f"Dry Density: {round(dry_density, 2)} kN/m³")
return f"{round(dry_density, 2)} kN/m³"
except Exception as e:
return f"Error: {e}"
# ------------------------------
# PDF Report Generator
# ------------------------------
def export_full_report():
try:
file_path = "/tmp/GeoMate_Report.pdf"
c = canvas.Canvas(file_path, pagesize=A4)
width, height = A4
c.setFont("Helvetica", 12)
y = height - 50
for line in report_summary:
c.drawString(40, y, line)
y -= 20
if y < 50:
c.showPage()
c.setFont("Helvetica", 12)
y = height - 50
c.save()
return file_path
except Exception as e:
return f"Error: {e}"
# ------------------------------
# Gradio Interface
# ------------------------------
with gr.Blocks(title="GeoMate 🌍 - Soil Engineering Toolkit") as demo:
gr.Markdown("""
<div style='text-align:center; font-size:26px; font-weight:bold; color:#ff6600;'>🌍 GeoMate - Soil Engineering Toolkit</div>
<p style='color:#333;'>Perform all major soil-related geotechnical calculations in one place!</p>
""")
with gr.Tab("📷 Soil Recognizer"):
img_input = gr.Image(type="pil", label="Upload Soil Image")
img_output = gr.Textbox(label="Prediction Output")
img_input.change(fn=predict_soil_type, inputs=img_input, outputs=img_output)
with gr.Tab("🤖 Ask GeoMate"):
gr.Interface(fn=ask_soil_region,
inputs=gr.Textbox(placeholder="e.g., What foundation is suitable in Karachi?", lines=2),
outputs="text").render()
with gr.Tab("🧪 Soil Classification"):
system = gr.Dropdown(["USCS", "AASHTO"], label="Classification System", value="USCS")
ll = gr.Number(label="Liquid Limit (%)")
pi = gr.Number(label="Plasticity Index (%)")
gs = gr.Number(label="Grain Size (mm)")
classify_btn = gr.Button("Classify Soil")
classification = gr.Textbox(label="Soil Type")
classify_btn.click(classify_soil, [system, ll, pi, gs], classification)
with gr.Tab("🏗️ Bearing Capacity"):
q = gr.Number(label="Overburden Pressure")
q_unit = gr.Dropdown(["kN/m²", "psf", "kPa"], label="Unit", value="kN/m²")
nq = gr.Number(label="Nq (Bearing Capacity Factor)")
B = gr.Number(label="Width of Foundation (m)")
bc_result = gr.Textbox(label="Ultimate Bearing Capacity")
gr.Button("Calculate").click(bearing_capacity_solver, [q, nq, q_unit, B], bc_result)
with gr.Tab("⛰️ Slope Stability"):
c = gr.Number(label="Cohesion (kN/m²)")
phi = gr.Number(label="Friction Angle (°)")
gamma = gr.Number(label="Unit Weight (kN/m³)")
h = gr.Number(label="Height of Slope (m)")
fs_result = gr.Textbox(label="Factor of Safety")
gr.Button("Check Stability").click(slope_stability_solver, [c, phi, gamma, h], fs_result)
with gr.Tab("📉 Consolidation Settlement"):
ds = gr.Number(label="Change in Stress (kN/m²)")
mv = gr.Number(label="Volume Compressibility (m²/kN)")
H = gr.Number(label="Soil Layer Thickness (m)")
s_result = gr.Textbox(label="Settlement")
gr.Button("Compute Settlement").click(consolidation_solver, [ds, mv, H], s_result)
with gr.Tab("💧 Seepage"):
k = gr.Number(label="Permeability (m/s)")
i = gr.Number(label="Hydraulic Gradient")
A = gr.Number(label="Flow Area (m²)")
seep_result = gr.Textbox(label="Seepage Discharge")
gr.Button("Calculate Seepage").click(seepage_solver, [k, i, A], seep_result)
with gr.Tab("🔩 Compaction Test"):
W = gr.Number(label="Dry Weight of Soil (kN)")
V = gr.Number(label="Volume of Mold (m³)")
comp_result = gr.Textbox(label="Dry Density")
gr.Button("Calculate Dry Density").click(compaction_solver, [W, V], comp_result)
with gr.Tab("📄 Generate Report"):
pdf_output = gr.File(label="Download PDF")
gr.Button("Export Full Report").click(fn=export_full_report, inputs=[], outputs=pdf_output)
# Launch App
demo.launch() |