File size: 2,385 Bytes
7099585
 
 
5f93b0b
7099585
 
 
 
 
 
 
 
 
5f93b0b
 
 
e7c53a2
 
 
5f93b0b
e7c53a2
5f93b0b
e7c53a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c74c7
fd14677
 
 
 
 
 
 
 
 
 
 
7099585
fd14677
5f93b0b
566493a
 
7099585
566493a
7099585
 
5f93b0b
 
 
 
 
 
 
7099585
 
 
fd14677
672ee53
 
 
5f93b0b
672ee53
 
 
5f93b0b
 
7099585
 
5f93b0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
from huggingface_hub import InferenceClient


def respond(
    message,
    history: list[dict[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    hf_token: gr.OAuthToken,
):
    """
    For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
    """
    client = InferenceClient(token=hf_token.token, model="deepseek-ai/DeepSeek-V3.2")

    messages = [{"role": "system", "content": system_message}]

    messages.extend(history)

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        choices = message.choices
        token = ""
        if len(choices) and choices[0].delta.content:
            token = choices[0].delta.content

        response += token
        yield response


theme = gr.themes.Soft(
    primary_hue="indigo",
    secondary_hue="violet",
).set(
    button_primary_background_fill="*primary_500",
    button_primary_text_color="white",
)

css = """
h1 { text-align: center; color: #4f46e5; font-size: 2em; margin-bottom: 0.5em; }
.login-text { font-size: 0.9em; color: #666; text-align: center; margin-top: 5px; }
"""

chatbot = gr.ChatInterface(
    respond,
    type="messages",
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

with gr.Blocks(theme=theme, css=css) as demo:
    gr.Markdown("# ✨ Le Chatbot qu'il vous faut")
    gr.Markdown("Une interface intelligente propulsée par DeepSeek AI.", elem_classes="description")
    
    with gr.Sidebar():
        gr.Markdown("### 🔐 Authentification")
        gr.LoginButton(value="Connexion HF")
        gr.Markdown("Connectez-vous pour utiliser le modèle.")
    chatbot.render()


if __name__ == "__main__":
    demo.launch(share=True)