Spaces:
Running
Running
File size: 8,962 Bytes
b171cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os, json, streamlit as st
from backend.rag_engine import get_embedder, get_chroma, retrieve, seed_index
from backend.soap_generator import compose_soap
from backend.pdf_utils import generate_pdf
from backend.chat_textgen import chat
from utils.constants import DOCS_DIR, RETRIEVAL_K_DEFAULT
st.set_page_config(
page_title="MediAssist β Clinical Decision Support",
page_icon="π©Ί",
layout="wide",
initial_sidebar_state="expanded"
)
@st.cache_resource(show_spinner=False)
def _embedder():
return get_embedder()
@st.cache_resource(show_spinner=False)
def _col():
return get_chroma()[1]
# Sidebar Configuration
with st.sidebar:
st.markdown("## βοΈ Configuration")
with st.expander("RAG Index Management", expanded=False):
if st.button("π Seed / Refresh RAG Index"):
with st.spinner("Indexing medical guidelines..."):
try:
n = seed_index(_col(), _embedder(), DOCS_DIR)
st.success(f"β
Indexed {n} chunks from {DOCS_DIR}")
except Exception as e:
st.error(f"β Indexing failed: {str(e)}")
st.caption("Upload .txt/.md files to `data/guidelines/<specialty>/` then reseed.")
st.divider()
st.markdown("### About")
st.info(
"**MediAssist v15** combines clinical guidelines with AI to provide "
"evidence-based decision support for healthcare professionals."
)
with st.expander("Features", expanded=False):
st.markdown("""
- π RAG-based guideline retrieval
- π€ SOAP note generation
- π¬ Context-aware AI chat
- π PDF report generation
""")
# Main Content
st.title("π©Ί MediAssist β Clinical Decision Support System")
st.markdown(
"AI-powered clinical guidelines with **RAG** β’ **SOAP** β’ **Chat** β’ **PDF Reports**"
)
# Main Input Section
st.markdown("### π Patient Information")
narrative = st.text_area(
"Patient Narrative",
height=120,
placeholder="e.g., 32-year-old female with 10 days of period delay, nausea, mild cramps. No fever. Medical history: PCOS.",
help="Describe the patient's presenting complaint and relevant history"
)
col1, col2 = st.columns([3, 1])
with col1:
k = st.slider(
"Number of guidelines to retrieve",
min_value=1,
max_value=10,
value=RETRIEVAL_K_DEFAULT,
help="More results = more comprehensive but potentially noisy"
)
with col2:
st.metric("Retrieval K", k)
st.divider()
# Create Tabs for Different Functions
tab1, tab2, tab3, tab4 = st.tabs(["π SOAP Note", "π¬ AI Chat", "π PDF Report", "π Guidelines"])
# Tab 1: SOAP Note Generation
with tab1:
st.markdown("### Generate SOAP Note with Clinical Evidence")
col_soap1, col_soap2 = st.columns(2)
if st.button("π§Ύ Generate SOAP Note", key="soap_button"):
if not narrative.strip():
st.warning("β οΈ Please enter patient narrative first.")
else:
with st.spinner("Retrieving relevant guidelines..."):
try:
items = retrieve(_col(), _embedder(), narrative, k=k)
soap = compose_soap(narrative, items)
with col_soap1:
st.subheader("SOAP Note (JSON)")
st.code(json.dumps(soap, indent=2), language="json")
# Copy button helper
st.caption("π‘ Tip: Use the copy button in the code block to copy the JSON")
with col_soap2:
st.subheader(f"π Citations ({len(items)} sources)")
if not items:
st.info("No relevant guidelines found.")
else:
for i, it in enumerate(items, 1):
with st.container(border=True):
st.markdown(f"**Source {i}: {it.get('title', 'Unknown')}**")
st.caption(f"π {it.get('source', 'N/A')}")
st.markdown(f"> {it.get('text', '')[:350]}...")
except Exception as e:
st.error(f"β Error generating SOAP note: {str(e)}")
# Tab 2: AI Chat
with tab2:
st.markdown("### Conversational AI Assistant")
col_chat1, col_chat2 = st.columns([1, 1])
with col_chat1:
mode = st.radio(
"Chat Mode",
["Patient-facing explanation", "Doctor-facing analysis"],
help="Choose audience for AI response"
)
if st.button("π¬ Start Chat Session", key="chat_button"):
if not narrative.strip():
st.warning("β οΈ Please enter patient narrative first.")
else:
with st.spinner("AI is thinking..."):
try:
reply = chat(
narrative,
mode="patient" if "Patient" in mode else "doctor"
)
st.markdown("### AI Response")
st.markdown(reply)
except Exception as e:
st.error(f"β Chat error: {str(e)}")
# Tab 3: PDF Report
with tab3:
st.markdown("### Generate Clinical PDF Report")
col_pdf1, col_pdf2 = st.columns([2, 1])
with col_pdf1:
ai_summary = st.text_area(
"Doctor-Reviewed Summary",
height=100,
placeholder="Enter clinical summary, assessment, and plan...",
help="This will be included in the PDF report"
)
with col_pdf2:
report_name = st.text_input(
"Report Filename",
value="MediAssist_Report",
help="PDF will be saved as [filename].pdf"
)
if st.button("π Generate PDF Report", key="pdf_button"):
if not narrative.strip():
st.warning("β οΈ Please enter patient narrative first.")
else:
with st.spinner("Generating PDF..."):
try:
items = retrieve(_col(), _embedder(), narrative, k=3)
soap = compose_soap(narrative, items)
pdf_path = f"{report_name}.pdf"
generate_pdf(
pdf_path,
"MediAssist β Clinical Report",
soap,
ai_summary
)
with open(pdf_path, "rb") as pdf_file:
st.download_button(
label="β¬οΈ Download PDF Report",
data=pdf_file,
file_name=pdf_path,
mime="application/pdf",
key="pdf_download"
)
st.success("β
PDF generated successfully!")
except Exception as e:
st.error(f"β PDF generation error: {str(e)}")
# Tab 4: Guidelines Browse
with tab4:
st.markdown("### Browse Medical Guidelines")
if st.button("π Load Available Guidelines", key="guidelines_button"):
with st.spinner("Loading guidelines..."):
try:
if os.path.exists(DOCS_DIR):
guidelines = []
for root, dirs, files in os.walk(DOCS_DIR):
for file in files:
if file.endswith(('.txt', '.md')):
guidelines.append(os.path.join(root, file))
if guidelines:
st.info(f"Found {len(guidelines)} guidelines")
for guideline in sorted(guidelines)[:10]: # Show first 10
st.caption(f"π {os.path.basename(guideline)}")
else:
st.warning("No guidelines found. Upload files to `data/guidelines/`")
else:
st.error(f"Guidelines directory not found: {DOCS_DIR}")
except Exception as e:
st.error(f"β Error loading guidelines: {str(e)}")
st.divider()
# Footer
st.markdown("""
---
**Disclaimer:** MediAssist is a decision support tool and does not replace professional clinical judgment.
Always consult with qualified healthcare professionals for medical decisions.
Made with β€οΈ by the MediAssist Team | Deployed on π€ Hugging Face Spaces
""") |