Spaces:
Sleeping
Sleeping
File size: 8,085 Bytes
cc4ea58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
"""
AI Feedback Module - GPT-4o powered speech therapy feedback.
Uses GitHub Models API for GPT-4o access.
"""
import os
import json
import logging
from typing import Optional, List
from dataclasses import dataclass
from openai import OpenAI
logger = logging.getLogger(__name__)
@dataclass
class AIFeedbackResult:
"""AI-generated feedback for speech therapy."""
feedback: str
encouragement: str
specific_tips: List[str]
recommended_exercises: List[str]
difficulty_adjustment: Optional[str] # "easier", "same", "harder"
class AIFeedbackGenerator:
"""
Generate personalized speech therapy feedback using GPT-4o.
Uses GitHub Models API (free for GitHub users).
"""
def __init__(self):
self.client: Optional[OpenAI] = None
self.model = "gpt-4o"
self._initialize_client()
def _initialize_client(self):
"""Initialize the OpenAI client with GitHub Models."""
github_token = os.getenv("GITHUB_TOKEN")
if not github_token:
raise ValueError(
"GITHUB_TOKEN not found. Please set it in your .env file. "
"Get your token at: https://github.com/settings/tokens"
)
# Use GitHub Models (free GPT-4o access)
self.client = OpenAI(
base_url="https://models.inference.ai.azure.com",
api_key=github_token,
)
self.model = "gpt-4o"
logger.info("AI Feedback: Using GitHub Models (GPT-4o)")
async def generate_feedback(
self,
target_text: str,
transcription: str,
overall_score: float,
clarity_score: float,
pace_score: float,
fluency_score: float,
errors: List[dict],
user_context: Optional[dict] = None
) -> AIFeedbackResult:
"""
Generate personalized feedback for a speech exercise attempt.
Args:
target_text: The text the user was supposed to say
transcription: What the ASR heard
overall_score: 0-100 overall score
clarity_score: 0-100 clarity score
pace_score: 0-100 pace score
fluency_score: 0-100 fluency score
errors: List of pronunciation errors detected
user_context: Optional user profile info (speech condition, etc.)
Returns:
AIFeedbackResult with personalized feedback
"""
# Build context about user if available
user_info = ""
if user_context:
condition = user_context.get("speech_condition", "")
severity = user_context.get("severity_level", "")
if condition:
user_info = f"\nUser has {condition}"
if severity:
user_info += f" (severity: {severity}/5)"
user_info += ". Adjust feedback accordingly."
# Format errors for the prompt
error_summary = ""
if errors:
error_items = []
for e in errors[:5]: # Limit to 5 errors
error_items.append(
f"- '{e.get('expected', '')}' → '{e.get('actual', '')}' ({e.get('error_type', '')})"
)
error_summary = "\n".join(error_items)
system_prompt = """You are a supportive, encouraging speech therapist helping users improve their speech clarity.
Your feedback should be:
- Warm and encouraging, never discouraging
- Specific and actionable
- Age-appropriate and easy to understand
- Focused on progress, not perfection
Always acknowledge effort and provide constructive guidance."""
user_prompt = f"""Please provide feedback for this speech exercise attempt:
**Target phrase:** "{target_text}"
**User said:** "{transcription}"
**Scores:**
- Overall: {overall_score:.0f}/100
- Clarity: {clarity_score:.0f}/100
- Pace: {pace_score:.0f}/100
- Fluency: {fluency_score:.0f}/100
**Pronunciation differences:**
{error_summary if error_summary else "No major differences detected"}
{user_info}
Please respond in this JSON format:
{{
"feedback": "2-3 sentences of overall feedback",
"encouragement": "A short encouraging message",
"specific_tips": ["tip 1", "tip 2", "tip 3"],
"recommended_exercises": ["exercise 1", "exercise 2"],
"difficulty_adjustment": "easier" or "same" or "harder"
}}"""
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
],
temperature=0.7,
max_tokens=500,
response_format={"type": "json_object"}
)
# Parse the response
result = json.loads(response.choices[0].message.content)
return AIFeedbackResult(
feedback=result.get("feedback", "Good effort! Keep practicing."),
encouragement=result.get("encouragement", "You're making progress!"),
specific_tips=result.get("specific_tips", []),
recommended_exercises=result.get("recommended_exercises", []),
difficulty_adjustment=result.get("difficulty_adjustment", "same")
)
async def generate_session_summary(
self,
session_stats: dict,
attempts: List[dict]
) -> str:
"""Generate an AI summary of a therapy session."""
prompt = f"""Summarize this speech therapy session for the user:
**Session Stats:**
- Duration: {session_stats.get('duration_minutes', 0)} minutes
- Exercises completed: {session_stats.get('exercise_count', 0)}
- Average score: {session_stats.get('average_score', 0):.0f}/100
- Best score: {session_stats.get('best_score', 0):.0f}/100
**Exercise Types Practiced:** {', '.join(session_stats.get('exercise_types', []))}
Please provide a brief, encouraging 2-3 sentence summary of their session."""
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": "You are a supportive speech therapist providing session summaries."},
{"role": "user", "content": prompt}
],
temperature=0.7,
max_tokens=150
)
return response.choices[0].message.content
async def generate_weekly_insights(
self,
weekly_data: dict
) -> dict:
"""Generate AI-powered weekly progress insights."""
prompt = f"""Analyze this user's weekly speech therapy progress:
**This Week:**
- Sessions: {weekly_data.get('sessions_this_week', 0)}
- Total practice time: {weekly_data.get('practice_minutes', 0)} minutes
- Average score: {weekly_data.get('avg_score', 0):.0f}/100
- Score change from last week: {weekly_data.get('score_change', 0):+.1f}%
**Strengths:** {', '.join(weekly_data.get('strengths', ['Consistent practice']))}
**Areas to improve:** {', '.join(weekly_data.get('weaknesses', ['Continue practicing']))}
Provide a JSON response with:
{{
"summary": "2-3 sentence progress summary",
"celebration": "Something specific to celebrate",
"focus_area": "One specific thing to focus on next week",
"goal": "A realistic goal for next week"
}}"""
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": "You are an encouraging speech therapist analyzing weekly progress."},
{"role": "user", "content": prompt}
],
temperature=0.7,
max_tokens=300,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
# Singleton instance
_feedback_generator: Optional[AIFeedbackGenerator] = None
def get_ai_feedback_generator() -> AIFeedbackGenerator:
"""Get or create AIFeedbackGenerator singleton."""
global _feedback_generator
if _feedback_generator is None:
_feedback_generator = AIFeedbackGenerator()
return _feedback_generator
|