Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
|
| 3 |
+
import spaces
|
| 4 |
+
import torch
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
# Load the model and processor
|
| 8 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner").to("cpu").eval()
|
| 9 |
+
processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner")
|
| 10 |
+
|
| 11 |
+
def modify_caption(caption: str) -> str:
|
| 12 |
+
"""
|
| 13 |
+
Removes specific prefixes from captions.
|
| 14 |
+
Args:
|
| 15 |
+
caption (str): A string containing a caption.
|
| 16 |
+
Returns:
|
| 17 |
+
str: The caption with the prefix removed if it was present.
|
| 18 |
+
"""
|
| 19 |
+
prefix_substrings = [
|
| 20 |
+
('captured from ', ''),
|
| 21 |
+
('captured at ', '')
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings])
|
| 25 |
+
replacers = {opening: replacer for opening, replacer in prefix_substrings}
|
| 26 |
+
|
| 27 |
+
def replace_fn(match):
|
| 28 |
+
return replacers[match.group(0)]
|
| 29 |
+
|
| 30 |
+
return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE)
|
| 31 |
+
|
| 32 |
+
def create_captions_rich(images):
|
| 33 |
+
"""
|
| 34 |
+
Generates captions for input images.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
images (list): List of images to generate captions for.
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
list: List of captions, one for each input image.
|
| 41 |
+
"""
|
| 42 |
+
captions = []
|
| 43 |
+
for image in images:
|
| 44 |
+
try:
|
| 45 |
+
prompt = "caption en"
|
| 46 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to("cpu")
|
| 47 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
| 48 |
+
|
| 49 |
+
with torch.inference_mode():
|
| 50 |
+
generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False)
|
| 51 |
+
generation = generation[0][input_len:]
|
| 52 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 53 |
+
|
| 54 |
+
modified_caption = modify_caption(decoded)
|
| 55 |
+
captions.append(modified_caption)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
captions.append(f"Error processing image: {e}")
|
| 58 |
+
return captions
|
| 59 |
+
|
| 60 |
+
css = """
|
| 61 |
+
#mkd {
|
| 62 |
+
height: 500px;
|
| 63 |
+
overflow: auto;
|
| 64 |
+
border: 8px solid #ccc;
|
| 65 |
+
}
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
with gr.Blocks(css=css) as demo:
|
| 69 |
+
gr.HTML("<h1><center>Image caption using finetuned PaliGemma on SD3 generation data.<center><h1>")
|
| 70 |
+
with gr.Tab(label="Img2Prompt for SD3"):
|
| 71 |
+
with gr.Row():
|
| 72 |
+
with gr.Column():
|
| 73 |
+
input_img = gr.Image(label="Input Image", tool="select", type="pil", interactive=True)
|
| 74 |
+
submit_btn = gr.Button(value="Start")
|
| 75 |
+
output = gr.Textbox(label="Prompt", lines=10, interactive=True)
|
| 76 |
+
|
| 77 |
+
submit_btn.click(create_captions_rich, [input_img], [output])
|
| 78 |
+
|
| 79 |
+
demo.launch(debug=True)
|