Spaces:
Runtime error
Runtime error
Commit
·
187c8cf
1
Parent(s):
fe9a872
- __pycache__/main.cpython-310.pyc +0 -0
- __pycache__/models.cpython-310.pyc +0 -0
- app.py +9 -6
- main.py +11 -11
- models.py +3 -2
__pycache__/main.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
|
|
|
__pycache__/models.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/models.cpython-310.pyc and b/__pycache__/models.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -9,7 +9,6 @@ st.set_page_config(page_title="Aidan Bench - Generator")
|
|
| 9 |
|
| 10 |
st.title("Aidan Bench - Generator")
|
| 11 |
|
| 12 |
-
|
| 13 |
# API Key Inputs with Security and User Experience Enhancements
|
| 14 |
st.warning("Please keep your API keys secure and confidential. This app does not store or log your API keys.")
|
| 15 |
|
|
@@ -94,9 +93,13 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 94 |
st.session_state.user_questions = []
|
| 95 |
|
| 96 |
# Threshold Sliders
|
| 97 |
-
st.subheader("Threshold Sliders")
|
| 98 |
-
coherence_threshold = st.slider("Coherence Threshold (0-5):", 0, 5, 3)
|
| 99 |
-
novelty_threshold = st.slider("Novelty Threshold (0-1):", 0.0, 1.0, 0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# Workflow Selection
|
| 102 |
workflow = st.radio("Select Workflow:", ["Use Predefined Questions", "Use User-Defined Questions"])
|
|
@@ -159,9 +162,9 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 159 |
|
| 160 |
# Benchmarking logic using the chosen execution mode
|
| 161 |
if execution_mode == "Sequential":
|
| 162 |
-
question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key,judge_model_name,coherence_threshold,novelty_threshold)
|
| 163 |
else: # Multithreaded
|
| 164 |
-
question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads, judge_model_name, coherence_threshold,novelty_threshold)
|
| 165 |
|
| 166 |
results.extend(question_results)
|
| 167 |
|
|
|
|
| 9 |
|
| 10 |
st.title("Aidan Bench - Generator")
|
| 11 |
|
|
|
|
| 12 |
# API Key Inputs with Security and User Experience Enhancements
|
| 13 |
st.warning("Please keep your API keys secure and confidential. This app does not store or log your API keys.")
|
| 14 |
|
|
|
|
| 93 |
st.session_state.user_questions = []
|
| 94 |
|
| 95 |
# Threshold Sliders
|
| 96 |
+
st.sidebar.subheader("Threshold Sliders")
|
| 97 |
+
coherence_threshold = st.sidebar.slider("Coherence Threshold (0-5):", 0, 5, 3)
|
| 98 |
+
novelty_threshold = st.sidebar.slider("Novelty Threshold (0-1):", 0.0, 1.0, 0.1)
|
| 99 |
+
|
| 100 |
+
st.sidebar.subheader("Temp Sliders")
|
| 101 |
+
temp_threshold = st.sidebar.slider("Temperature (0-2):", 0.0, 2.0, 1.0)
|
| 102 |
+
top_p = st.sidebar.slider("Top P (0-1):", 0.0, 1.0, 1.0)
|
| 103 |
|
| 104 |
# Workflow Selection
|
| 105 |
workflow = st.radio("Select Workflow:", ["Use Predefined Questions", "Use User-Defined Questions"])
|
|
|
|
| 162 |
|
| 163 |
# Benchmarking logic using the chosen execution mode
|
| 164 |
if execution_mode == "Sequential":
|
| 165 |
+
question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key,judge_model_name,coherence_threshold,novelty_threshold,temp_threshold,top_p)
|
| 166 |
else: # Multithreaded
|
| 167 |
+
question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads, judge_model_name, coherence_threshold,novelty_threshold,temp_threshold,top_p)
|
| 168 |
|
| 169 |
results.extend(question_results)
|
| 170 |
|
main.py
CHANGED
|
@@ -7,25 +7,25 @@ import threading
|
|
| 7 |
import streamlit as st # Import Streamlit
|
| 8 |
import queue
|
| 9 |
|
| 10 |
-
def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key):
|
| 11 |
"""Generates an answer to a question using the specified language model."""
|
| 12 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
| 13 |
try:
|
| 14 |
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
| 15 |
-
openai_api_key=openai_api_key)
|
| 16 |
return new_answer
|
| 17 |
except Exception as e:
|
| 18 |
st.error(f"Error generating answer: {str(e)}") # Use st.error
|
| 19 |
return None
|
| 20 |
|
| 21 |
|
| 22 |
-
def evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name):
|
| 23 |
"""Evaluates the coherence and novelty of an answer."""
|
| 24 |
judge_prompt = create_judge_prompt(question, new_answer)
|
| 25 |
judge = judge_model_name # Use the judge_model_name passed to the function
|
| 26 |
try:
|
| 27 |
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
| 28 |
-
openai_api_key=openai_api_key)
|
| 29 |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
| 30 |
return coherence_score
|
| 31 |
except Exception as e:
|
|
@@ -33,18 +33,18 @@ def evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge
|
|
| 33 |
return None
|
| 34 |
|
| 35 |
|
| 36 |
-
def process_question(question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold):
|
| 37 |
start_time = time.time()
|
| 38 |
previous_answers = []
|
| 39 |
question_novelty = 0
|
| 40 |
|
| 41 |
try:
|
| 42 |
while True:
|
| 43 |
-
new_answer = generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key)
|
| 44 |
if new_answer is None:
|
| 45 |
break
|
| 46 |
|
| 47 |
-
coherence_score = evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name)
|
| 48 |
if coherence_score is None:
|
| 49 |
break
|
| 50 |
|
|
@@ -126,7 +126,7 @@ def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key):
|
|
| 126 |
return novelty
|
| 127 |
|
| 128 |
|
| 129 |
-
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None, judge_model_name=None,coherence_threshold=None,novelty_threshold=None):
|
| 130 |
novelty_score = 0
|
| 131 |
results = []
|
| 132 |
result_queue = queue.Queue() # Create a queue for communication
|
|
@@ -140,7 +140,7 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
|
|
| 140 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 141 |
# Submit tasks to the thread pool
|
| 142 |
future_to_question = {
|
| 143 |
-
executor.submit(process_question, question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold): question
|
| 144 |
for question in questions
|
| 145 |
}
|
| 146 |
|
|
@@ -185,12 +185,12 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
|
|
| 185 |
return results
|
| 186 |
|
| 187 |
|
| 188 |
-
def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key, judge_model_name,coherence_threshold,novelty_threshold):
|
| 189 |
novelty_score = 0
|
| 190 |
results = []
|
| 191 |
|
| 192 |
for i, question in enumerate(questions):
|
| 193 |
-
for result in process_question(question, model_name, open_router_key, openai_api_key, None, judge_model_name,coherence_threshold,novelty_threshold):
|
| 194 |
if result["type"] == "answer":
|
| 195 |
st.write(f"**Question:** {result['question']}")
|
| 196 |
st.write(f"**New Answer:**\n{result['answer']}")
|
|
|
|
| 7 |
import streamlit as st # Import Streamlit
|
| 8 |
import queue
|
| 9 |
|
| 10 |
+
def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key,temperature,top_p):
|
| 11 |
"""Generates an answer to a question using the specified language model."""
|
| 12 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
| 13 |
try:
|
| 14 |
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
| 15 |
+
openai_api_key=openai_api_key,temperature=temperature,top_p=top_p)
|
| 16 |
return new_answer
|
| 17 |
except Exception as e:
|
| 18 |
st.error(f"Error generating answer: {str(e)}") # Use st.error
|
| 19 |
return None
|
| 20 |
|
| 21 |
|
| 22 |
+
def evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name,temperature,top_p):
|
| 23 |
"""Evaluates the coherence and novelty of an answer."""
|
| 24 |
judge_prompt = create_judge_prompt(question, new_answer)
|
| 25 |
judge = judge_model_name # Use the judge_model_name passed to the function
|
| 26 |
try:
|
| 27 |
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
| 28 |
+
openai_api_key=openai_api_key,temperature=temperature,top_p=top_p)
|
| 29 |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
| 30 |
return coherence_score
|
| 31 |
except Exception as e:
|
|
|
|
| 33 |
return None
|
| 34 |
|
| 35 |
|
| 36 |
+
def process_question(question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold,temperature,top_p):
|
| 37 |
start_time = time.time()
|
| 38 |
previous_answers = []
|
| 39 |
question_novelty = 0
|
| 40 |
|
| 41 |
try:
|
| 42 |
while True:
|
| 43 |
+
new_answer = generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key, temperature,top_p)
|
| 44 |
if new_answer is None:
|
| 45 |
break
|
| 46 |
|
| 47 |
+
coherence_score = evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name,temperature,top_p)
|
| 48 |
if coherence_score is None:
|
| 49 |
break
|
| 50 |
|
|
|
|
| 126 |
return novelty
|
| 127 |
|
| 128 |
|
| 129 |
+
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None, judge_model_name=None,coherence_threshold=None,novelty_threshold=None,temperature=0,top_p=0):
|
| 130 |
novelty_score = 0
|
| 131 |
results = []
|
| 132 |
result_queue = queue.Queue() # Create a queue for communication
|
|
|
|
| 140 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 141 |
# Submit tasks to the thread pool
|
| 142 |
future_to_question = {
|
| 143 |
+
executor.submit(process_question, question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold,temperature,top_p): question
|
| 144 |
for question in questions
|
| 145 |
}
|
| 146 |
|
|
|
|
| 185 |
return results
|
| 186 |
|
| 187 |
|
| 188 |
+
def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key, judge_model_name,coherence_threshold,novelty_threshold,temperature,top_p):
|
| 189 |
novelty_score = 0
|
| 190 |
results = []
|
| 191 |
|
| 192 |
for i, question in enumerate(questions):
|
| 193 |
+
for result in process_question(question, model_name, open_router_key, openai_api_key, None, judge_model_name,coherence_threshold,novelty_threshold,temperature,top_p):
|
| 194 |
if result["type"] == "answer":
|
| 195 |
st.write(f"**Question:** {result['question']}")
|
| 196 |
st.write(f"**New Answer:**\n{result['answer']}")
|
models.py
CHANGED
|
@@ -5,7 +5,7 @@ from retry import retry
|
|
| 5 |
|
| 6 |
|
| 7 |
@retry(tries=3)
|
| 8 |
-
def chat_with_model(prompt, model, open_router_key=None, openai_api_key=None, max_tokens=4000, temperature=0):
|
| 9 |
if open_router_key:
|
| 10 |
client = OpenAI(
|
| 11 |
api_key=open_router_key,
|
|
@@ -25,7 +25,8 @@ def chat_with_model(prompt, model, open_router_key=None, openai_api_key=None, ma
|
|
| 25 |
}
|
| 26 |
],
|
| 27 |
max_tokens=max_tokens,
|
| 28 |
-
temperature=temperature
|
|
|
|
| 29 |
)
|
| 30 |
return response.choices[0].message.content
|
| 31 |
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
@retry(tries=3)
|
| 8 |
+
def chat_with_model(prompt, model, open_router_key=None, openai_api_key=None, max_tokens=4000, temperature=0,top_p=0):
|
| 9 |
if open_router_key:
|
| 10 |
client = OpenAI(
|
| 11 |
api_key=open_router_key,
|
|
|
|
| 25 |
}
|
| 26 |
],
|
| 27 |
max_tokens=max_tokens,
|
| 28 |
+
temperature=temperature,
|
| 29 |
+
top_p=top_p
|
| 30 |
)
|
| 31 |
return response.choices[0].message.content
|
| 32 |
|