Spaces:
Runtime error
Runtime error
Commit
·
9d92eeb
1
Parent(s):
9a229f8
- __pycache__/main.cpython-310.pyc +0 -0
- app.py +8 -2
- main.py +40 -15
__pycache__/main.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -95,6 +95,12 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 95 |
# Choose execution mode
|
| 96 |
execution_mode = st.radio("Execution Mode:", ["Sequential", "Multithreaded"])
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# Benchmark Execution
|
| 99 |
if st.button("Start Benchmark"):
|
| 100 |
if not selected_questions:
|
|
@@ -115,9 +121,9 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 115 |
|
| 116 |
# ... (benchmarking logic using the chosen execution mode)
|
| 117 |
if execution_mode == "Sequential":
|
| 118 |
-
question_results = benchmark_model_sequential(model_name,
|
| 119 |
else: # Multithreaded
|
| 120 |
-
question_results = benchmark_model_multithreaded(model_name,
|
| 121 |
|
| 122 |
results.extend(question_results)
|
| 123 |
|
|
|
|
| 95 |
# Choose execution mode
|
| 96 |
execution_mode = st.radio("Execution Mode:", ["Sequential", "Multithreaded"])
|
| 97 |
|
| 98 |
+
# If multithreaded, allow user to configure thread pool size
|
| 99 |
+
if execution_mode == "Multithreaded":
|
| 100 |
+
max_threads = st.slider("Maximum Number of Threads:", 1, 10, 4) # Default to 4 threads
|
| 101 |
+
else:
|
| 102 |
+
max_threads = None # For sequential mode
|
| 103 |
+
|
| 104 |
# Benchmark Execution
|
| 105 |
if st.button("Start Benchmark"):
|
| 106 |
if not selected_questions:
|
|
|
|
| 121 |
|
| 122 |
# ... (benchmarking logic using the chosen execution mode)
|
| 123 |
if execution_mode == "Sequential":
|
| 124 |
+
question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key)
|
| 125 |
else: # Multithreaded
|
| 126 |
+
question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads)
|
| 127 |
|
| 128 |
results.extend(question_results)
|
| 129 |
|
main.py
CHANGED
|
@@ -6,7 +6,8 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
| 6 |
import threading
|
| 7 |
import streamlit as st # Import Streamlit
|
| 8 |
|
| 9 |
-
|
|
|
|
| 10 |
start_time = time.time()
|
| 11 |
st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True) # Display question in red
|
| 12 |
previous_answers = []
|
|
@@ -16,44 +17,60 @@ def process_question(question, model_name, open_router_key, openai_api_key):
|
|
| 16 |
while True:
|
| 17 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
| 18 |
try:
|
| 19 |
-
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
|
|
|
| 20 |
except Exception as e:
|
| 21 |
-
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>",
|
|
|
|
| 22 |
break
|
| 23 |
|
| 24 |
judge_prompt = create_judge_prompt(question, new_answer)
|
| 25 |
judge = "openai/gpt-4o-mini"
|
| 26 |
try:
|
| 27 |
-
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
|
|
|
| 28 |
except Exception as e:
|
| 29 |
-
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>",
|
|
|
|
| 30 |
break
|
| 31 |
|
| 32 |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
| 33 |
|
| 34 |
if coherence_score <= 3:
|
| 35 |
-
st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>",
|
|
|
|
| 36 |
break
|
| 37 |
|
| 38 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
| 39 |
|
| 40 |
if novelty_score < 0.1:
|
| 41 |
-
st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>",
|
|
|
|
| 42 |
break
|
| 43 |
|
| 44 |
st.write(f"**New Answer:**\n{new_answer}")
|
| 45 |
-
st.write(f"<span style='color:green'>Coherence Score: {coherence_score}</span>",
|
|
|
|
| 46 |
st.write(f"**Novelty Score:** {novelty_score}")
|
| 47 |
|
| 48 |
previous_answers.append(new_answer)
|
| 49 |
question_novelty += novelty_score
|
| 50 |
|
| 51 |
except Exception as e:
|
| 52 |
-
st.write(f"<span style='color:red'>Unexpected error processing question: {str(e)}</span>",
|
|
|
|
| 53 |
|
| 54 |
time_taken = time.time() - start_time
|
| 55 |
-
st.write(f"<span style='color:blue'>Total novelty score for this question: {question_novelty}</span>",
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
return question_novelty, [
|
| 59 |
{
|
|
@@ -86,14 +103,22 @@ def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key):
|
|
| 86 |
return novelty
|
| 87 |
|
| 88 |
|
| 89 |
-
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key):
|
| 90 |
novelty_score = 0
|
| 91 |
print_lock = threading.Lock() # Lock for thread-safe printing
|
| 92 |
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
with ThreadPoolExecutor(max_workers=
|
| 95 |
future_to_question = {executor.submit(
|
| 96 |
-
process_question, question, model_name, open_router_key, openai_api_key): question for question in questions}
|
| 97 |
|
| 98 |
for future in as_completed(future_to_question):
|
| 99 |
question = future_to_question[future]
|
|
@@ -117,7 +142,7 @@ def benchmark_model_sequential(model_name, questions, open_router_key, openai_ap
|
|
| 117 |
results = []
|
| 118 |
|
| 119 |
for i, question in enumerate(questions):
|
| 120 |
-
question_novelty, question_results = process_question(question, model_name, open_router_key, openai_api_key)
|
| 121 |
novelty_score += question_novelty
|
| 122 |
results.extend(question_results)
|
| 123 |
st.write(f"<span style='color:yellow'>Total novelty score across processed questions: {novelty_score}</span>", unsafe_allow_html=True) # Display progress after each question
|
|
|
|
| 6 |
import threading
|
| 7 |
import streamlit as st # Import Streamlit
|
| 8 |
|
| 9 |
+
|
| 10 |
+
def process_question(question, model_name, open_router_key, openai_api_key, progress_lock, completed_questions, total_questions):
|
| 11 |
start_time = time.time()
|
| 12 |
st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True) # Display question in red
|
| 13 |
previous_answers = []
|
|
|
|
| 17 |
while True:
|
| 18 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
| 19 |
try:
|
| 20 |
+
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
| 21 |
+
openai_api_key=openai_api_key)
|
| 22 |
except Exception as e:
|
| 23 |
+
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>",
|
| 24 |
+
unsafe_allow_html=True) # Display error in red
|
| 25 |
break
|
| 26 |
|
| 27 |
judge_prompt = create_judge_prompt(question, new_answer)
|
| 28 |
judge = "openai/gpt-4o-mini"
|
| 29 |
try:
|
| 30 |
+
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
| 31 |
+
openai_api_key=openai_api_key)
|
| 32 |
except Exception as e:
|
| 33 |
+
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>",
|
| 34 |
+
unsafe_allow_html=True) # Display error in red
|
| 35 |
break
|
| 36 |
|
| 37 |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
| 38 |
|
| 39 |
if coherence_score <= 3:
|
| 40 |
+
st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>",
|
| 41 |
+
unsafe_allow_html=True) # Display warning in yellow
|
| 42 |
break
|
| 43 |
|
| 44 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
| 45 |
|
| 46 |
if novelty_score < 0.1:
|
| 47 |
+
st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>",
|
| 48 |
+
unsafe_allow_html=True) # Display warning in yellow
|
| 49 |
break
|
| 50 |
|
| 51 |
st.write(f"**New Answer:**\n{new_answer}")
|
| 52 |
+
st.write(f"<span style='color:green'>Coherence Score: {coherence_score}</span>",
|
| 53 |
+
unsafe_allow_html=True) # Display coherence score in green
|
| 54 |
st.write(f"**Novelty Score:** {novelty_score}")
|
| 55 |
|
| 56 |
previous_answers.append(new_answer)
|
| 57 |
question_novelty += novelty_score
|
| 58 |
|
| 59 |
except Exception as e:
|
| 60 |
+
st.write(f"<span style='color:red'>Unexpected error processing question: {str(e)}</span>",
|
| 61 |
+
unsafe_allow_html=True) # Display error in red
|
| 62 |
|
| 63 |
time_taken = time.time() - start_time
|
| 64 |
+
st.write(f"<span style='color:blue'>Total novelty score for this question: {question_novelty}</span>",
|
| 65 |
+
unsafe_allow_html=True) # Display novelty score in blue
|
| 66 |
+
st.write(f"<span style='color:blue'>Time taken: {time_taken} seconds</span>",
|
| 67 |
+
unsafe_allow_html=True) # Display time taken in blue
|
| 68 |
+
|
| 69 |
+
# Update progress
|
| 70 |
+
with progress_lock:
|
| 71 |
+
completed_questions += 1
|
| 72 |
+
progress = completed_questions / total_questions
|
| 73 |
+
st.progress(progress) # Update the progress bar
|
| 74 |
|
| 75 |
return question_novelty, [
|
| 76 |
{
|
|
|
|
| 103 |
return novelty
|
| 104 |
|
| 105 |
|
| 106 |
+
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None):
|
| 107 |
novelty_score = 0
|
| 108 |
print_lock = threading.Lock() # Lock for thread-safe printing
|
| 109 |
results = []
|
| 110 |
+
completed_questions = 0 # Shared variable to track progress
|
| 111 |
+
progress_lock = threading.Lock() # Lock for protecting completed_questions
|
| 112 |
+
|
| 113 |
+
# Use max_threads if provided, otherwise default to the number of questions
|
| 114 |
+
if max_threads is None:
|
| 115 |
+
max_workers = len(questions)
|
| 116 |
+
else:
|
| 117 |
+
max_workers = max_threads
|
| 118 |
|
| 119 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 120 |
future_to_question = {executor.submit(
|
| 121 |
+
process_question, question, model_name, open_router_key, openai_api_key, progress_lock, completed_questions, len(questions)): question for question in questions}
|
| 122 |
|
| 123 |
for future in as_completed(future_to_question):
|
| 124 |
question = future_to_question[future]
|
|
|
|
| 142 |
results = []
|
| 143 |
|
| 144 |
for i, question in enumerate(questions):
|
| 145 |
+
question_novelty, question_results = process_question(question, model_name, open_router_key, openai_api_key, threading.Lock(), i, len(questions))
|
| 146 |
novelty_score += question_novelty
|
| 147 |
results.extend(question_results)
|
| 148 |
st.write(f"<span style='color:yellow'>Total novelty score across processed questions: {novelty_score}</span>", unsafe_allow_html=True) # Display progress after each question
|