Spaces:
Runtime error
Runtime error
Commit
·
eebf495
1
Parent(s):
fb39607
- __pycache__/main.cpython-310.pyc +0 -0
- app.py +10 -4
- main.py +89 -40
__pycache__/main.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -41,6 +41,7 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 41 |
models.sort(key=lambda model: model["id"])
|
| 42 |
|
| 43 |
model_names = [model["id"] for model in models]
|
|
|
|
| 44 |
except requests.exceptions.RequestException as e:
|
| 45 |
st.error(f"Error fetching models from OpenRouter API: {e}")
|
| 46 |
model_names = [] # Provide an empty list if API call fails
|
|
@@ -52,6 +53,13 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 52 |
st.error("No models available. Please check your API connection.")
|
| 53 |
st.stop() # Stop execution if no models are available
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Initialize session state for user_questions and predefined_questions
|
| 56 |
if "user_questions" not in st.session_state:
|
| 57 |
st.session_state.user_questions = []
|
|
@@ -107,8 +115,6 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 107 |
if not selected_questions:
|
| 108 |
st.warning("Please select at least one question.")
|
| 109 |
else:
|
| 110 |
-
# Initialize progress bar
|
| 111 |
-
progress_bar = st.progress(0)
|
| 112 |
num_questions = len(selected_questions)
|
| 113 |
results = []
|
| 114 |
|
|
@@ -117,9 +123,9 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
|
|
| 117 |
|
| 118 |
# Benchmarking logic using the chosen execution mode
|
| 119 |
if execution_mode == "Sequential":
|
| 120 |
-
question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key)
|
| 121 |
else: # Multithreaded
|
| 122 |
-
question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads)
|
| 123 |
|
| 124 |
results.extend(question_results)
|
| 125 |
|
|
|
|
| 41 |
models.sort(key=lambda model: model["id"])
|
| 42 |
|
| 43 |
model_names = [model["id"] for model in models]
|
| 44 |
+
judge_models = [model["id"] for model in models if "gpt" in model["id"]] # Example criteria
|
| 45 |
except requests.exceptions.RequestException as e:
|
| 46 |
st.error(f"Error fetching models from OpenRouter API: {e}")
|
| 47 |
model_names = [] # Provide an empty list if API call fails
|
|
|
|
| 53 |
st.error("No models available. Please check your API connection.")
|
| 54 |
st.stop() # Stop execution if no models are available
|
| 55 |
|
| 56 |
+
# Judge Model Selection
|
| 57 |
+
if judge_models:
|
| 58 |
+
judge_model_name = st.selectbox("Select a Judge Model", judge_models)
|
| 59 |
+
else:
|
| 60 |
+
st.error("No judge models available. Please check your API connection.")
|
| 61 |
+
st.stop() # Stop execution if no judge models are available
|
| 62 |
+
|
| 63 |
# Initialize session state for user_questions and predefined_questions
|
| 64 |
if "user_questions" not in st.session_state:
|
| 65 |
st.session_state.user_questions = []
|
|
|
|
| 115 |
if not selected_questions:
|
| 116 |
st.warning("Please select at least one question.")
|
| 117 |
else:
|
|
|
|
|
|
|
| 118 |
num_questions = len(selected_questions)
|
| 119 |
results = []
|
| 120 |
|
|
|
|
| 123 |
|
| 124 |
# Benchmarking logic using the chosen execution mode
|
| 125 |
if execution_mode == "Sequential":
|
| 126 |
+
question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key,judge_model_name)
|
| 127 |
else: # Multithreaded
|
| 128 |
+
question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads, judge_model_name)
|
| 129 |
|
| 130 |
results.extend(question_results)
|
| 131 |
|
main.py
CHANGED
|
@@ -7,37 +7,37 @@ import threading
|
|
| 7 |
import streamlit as st # Import Streamlit
|
| 8 |
import queue
|
| 9 |
|
|
|
|
| 10 |
def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key):
|
| 11 |
"""Generates an answer to a question using the specified language model."""
|
| 12 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
| 13 |
try:
|
| 14 |
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
| 15 |
-
|
| 16 |
return new_answer
|
| 17 |
except Exception as e:
|
| 18 |
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>",
|
| 19 |
-
|
| 20 |
return None
|
| 21 |
|
| 22 |
|
| 23 |
-
def evaluate_answer(question, new_answer, open_router_key, openai_api_key):
|
| 24 |
"""Evaluates the coherence and novelty of an answer."""
|
| 25 |
judge_prompt = create_judge_prompt(question, new_answer)
|
| 26 |
-
judge =
|
| 27 |
try:
|
| 28 |
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
| 29 |
-
|
| 30 |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
| 31 |
return coherence_score
|
| 32 |
except Exception as e:
|
| 33 |
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>",
|
| 34 |
-
|
| 35 |
return None
|
| 36 |
|
| 37 |
|
| 38 |
-
def process_question(question, model_name, open_router_key, openai_api_key, result_queue):
|
| 39 |
start_time = time.time()
|
| 40 |
-
# st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True)
|
| 41 |
previous_answers = []
|
| 42 |
question_novelty = 0
|
| 43 |
|
|
@@ -47,20 +47,20 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
|
|
| 47 |
if new_answer is None:
|
| 48 |
break
|
| 49 |
|
| 50 |
-
coherence_score = evaluate_answer(question, new_answer, open_router_key, openai_api_key)
|
| 51 |
if coherence_score is None:
|
| 52 |
break
|
| 53 |
|
| 54 |
-
if coherence_score <=
|
| 55 |
break
|
| 56 |
|
| 57 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
| 58 |
|
| 59 |
-
if novelty_score < 0.
|
| 60 |
break
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
"type": "answer",
|
| 65 |
"question": question,
|
| 66 |
"answer": new_answer,
|
|
@@ -69,26 +69,34 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
|
|
| 69 |
"results": [
|
| 70 |
{
|
| 71 |
"question": question,
|
| 72 |
-
"answers": previous_answers.copy() + [new_answer],
|
| 73 |
"coherence_score": coherence_score,
|
| 74 |
-
"novelty_score": question_novelty + novelty_score
|
| 75 |
}
|
| 76 |
]
|
| 77 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
previous_answers.append(new_answer)
|
| 80 |
question_novelty += novelty_score
|
| 81 |
|
| 82 |
except Exception as e:
|
| 83 |
-
result_queue
|
|
|
|
| 84 |
|
| 85 |
time_taken = time.time() - start_time
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
|
| 93 |
return question_novelty, [
|
| 94 |
{
|
|
@@ -121,7 +129,7 @@ def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key):
|
|
| 121 |
return novelty
|
| 122 |
|
| 123 |
|
| 124 |
-
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None):
|
| 125 |
novelty_score = 0
|
| 126 |
results = []
|
| 127 |
result_queue = queue.Queue() # Create a queue for communication
|
|
@@ -135,14 +143,13 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
|
|
| 135 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 136 |
# Submit tasks to the thread pool
|
| 137 |
future_to_question = {
|
| 138 |
-
executor.submit(process_question, question, model_name, open_router_key, openai_api_key, result_queue): question
|
| 139 |
for question in questions
|
| 140 |
}
|
| 141 |
|
| 142 |
-
#
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
result = result_queue.get_nowait()
|
| 146 |
if result["type"] == "answer":
|
| 147 |
st.write(f"**Question:** {result['question']}")
|
| 148 |
st.write(f"**New Answer:**\n{result['answer']}")
|
|
@@ -150,6 +157,11 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
|
|
| 150 |
unsafe_allow_html=True)
|
| 151 |
st.write(f"**Novelty Score:** {result['novelty_score']}")
|
| 152 |
results.extend(result["results"]) # Add results here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
elif result["type"] == "summary":
|
| 154 |
st.write(f"<span style='color:blue'>Total novelty score for question '{result['question']}': {result['total_novelty']}</span>",
|
| 155 |
unsafe_allow_html=True)
|
|
@@ -158,27 +170,64 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
|
|
| 158 |
elif result["type"] == "error":
|
| 159 |
st.write(f"<span style='color:red'>Error in thread: {result['message']}</span>",
|
| 160 |
unsafe_allow_html=True)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>",
|
| 166 |
unsafe_allow_html=True)
|
| 167 |
return results
|
| 168 |
|
| 169 |
|
| 170 |
-
def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key,
|
| 171 |
novelty_score = 0
|
| 172 |
results = []
|
| 173 |
|
| 174 |
for i, question in enumerate(questions):
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>",
|
| 184 |
unsafe_allow_html=True)
|
|
|
|
| 7 |
import streamlit as st # Import Streamlit
|
| 8 |
import queue
|
| 9 |
|
| 10 |
+
|
| 11 |
def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key):
|
| 12 |
"""Generates an answer to a question using the specified language model."""
|
| 13 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
| 14 |
try:
|
| 15 |
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
|
| 16 |
+
openai_api_key=openai_api_key)
|
| 17 |
return new_answer
|
| 18 |
except Exception as e:
|
| 19 |
st.write(f"<span style='color:red'>Error generating answer: {str(e)}</span>",
|
| 20 |
+
unsafe_allow_html=True)
|
| 21 |
return None
|
| 22 |
|
| 23 |
|
| 24 |
+
def evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name):
|
| 25 |
"""Evaluates the coherence and novelty of an answer."""
|
| 26 |
judge_prompt = create_judge_prompt(question, new_answer)
|
| 27 |
+
judge = judge_model_name # Use the judge_model_name passed to the function
|
| 28 |
try:
|
| 29 |
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
|
| 30 |
+
openai_api_key=openai_api_key)
|
| 31 |
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
|
| 32 |
return coherence_score
|
| 33 |
except Exception as e:
|
| 34 |
st.write(f"<span style='color:red'>Error getting judge response: {str(e)}</span>",
|
| 35 |
+
unsafe_allow_html=True)
|
| 36 |
return None
|
| 37 |
|
| 38 |
|
| 39 |
+
def process_question(question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name):
|
| 40 |
start_time = time.time()
|
|
|
|
| 41 |
previous_answers = []
|
| 42 |
question_novelty = 0
|
| 43 |
|
|
|
|
| 47 |
if new_answer is None:
|
| 48 |
break
|
| 49 |
|
| 50 |
+
coherence_score = evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name)
|
| 51 |
if coherence_score is None:
|
| 52 |
break
|
| 53 |
|
| 54 |
+
if coherence_score <= 3:
|
| 55 |
break
|
| 56 |
|
| 57 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
| 58 |
|
| 59 |
+
if novelty_score < 0.1:
|
| 60 |
break
|
| 61 |
|
| 62 |
+
|
| 63 |
+
result_dict = {
|
| 64 |
"type": "answer",
|
| 65 |
"question": question,
|
| 66 |
"answer": new_answer,
|
|
|
|
| 69 |
"results": [
|
| 70 |
{
|
| 71 |
"question": question,
|
| 72 |
+
"answers": previous_answers.copy() + [new_answer],
|
| 73 |
"coherence_score": coherence_score,
|
| 74 |
+
"novelty_score": question_novelty + novelty_score
|
| 75 |
}
|
| 76 |
]
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
if result_queue is not None: # Check if result_queue is provided
|
| 80 |
+
result_queue.put(result_dict)
|
| 81 |
+
|
| 82 |
+
yield result_dict # Use yield to return the result immediately
|
| 83 |
|
| 84 |
previous_answers.append(new_answer)
|
| 85 |
question_novelty += novelty_score
|
| 86 |
|
| 87 |
except Exception as e:
|
| 88 |
+
if result_queue is not None: # Check if result_queue is provided
|
| 89 |
+
result_queue.put({"type": "error", "message": str(e)})
|
| 90 |
|
| 91 |
time_taken = time.time() - start_time
|
| 92 |
+
|
| 93 |
+
if result_queue is not None: # Check if result_queue is provided
|
| 94 |
+
result_queue.put({
|
| 95 |
+
"type": "summary",
|
| 96 |
+
"question": question,
|
| 97 |
+
"total_novelty": question_novelty,
|
| 98 |
+
"time_taken": time_taken
|
| 99 |
+
})
|
| 100 |
|
| 101 |
return question_novelty, [
|
| 102 |
{
|
|
|
|
| 129 |
return novelty
|
| 130 |
|
| 131 |
|
| 132 |
+
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None, judge_model_name=None):
|
| 133 |
novelty_score = 0
|
| 134 |
results = []
|
| 135 |
result_queue = queue.Queue() # Create a queue for communication
|
|
|
|
| 143 |
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 144 |
# Submit tasks to the thread pool
|
| 145 |
future_to_question = {
|
| 146 |
+
executor.submit(process_question, question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name): question
|
| 147 |
for question in questions
|
| 148 |
}
|
| 149 |
|
| 150 |
+
# Collect results as they become available from futures and the queue
|
| 151 |
+
for future in as_completed(future_to_question):
|
| 152 |
+
for result in future.result(): # Iterate over yielded results from process_question
|
|
|
|
| 153 |
if result["type"] == "answer":
|
| 154 |
st.write(f"**Question:** {result['question']}")
|
| 155 |
st.write(f"**New Answer:**\n{result['answer']}")
|
|
|
|
| 157 |
unsafe_allow_html=True)
|
| 158 |
st.write(f"**Novelty Score:** {result['novelty_score']}")
|
| 159 |
results.extend(result["results"]) # Add results here
|
| 160 |
+
novelty_score += result["novelty_score"] # Update novelty score
|
| 161 |
+
st.write(
|
| 162 |
+
f"<span style='color:yellow'>Total novelty score across all questions (so far): {novelty_score}</span>",
|
| 163 |
+
unsafe_allow_html=True)
|
| 164 |
+
|
| 165 |
elif result["type"] == "summary":
|
| 166 |
st.write(f"<span style='color:blue'>Total novelty score for question '{result['question']}': {result['total_novelty']}</span>",
|
| 167 |
unsafe_allow_html=True)
|
|
|
|
| 170 |
elif result["type"] == "error":
|
| 171 |
st.write(f"<span style='color:red'>Error in thread: {result['message']}</span>",
|
| 172 |
unsafe_allow_html=True)
|
| 173 |
+
|
| 174 |
+
# Process remaining results in the queue (if any)
|
| 175 |
+
while not result_queue.empty():
|
| 176 |
+
result = result_queue.get()
|
| 177 |
+
if result["type"] == "answer":
|
| 178 |
+
st.write(f"**Question:** {result['question']}")
|
| 179 |
+
st.write(f"**New Answer:**\n{result['answer']}")
|
| 180 |
+
st.write(f"<span style='color:green'>Coherence Score: {result['coherence_score']}</span>",
|
| 181 |
+
unsafe_allow_html=True)
|
| 182 |
+
st.write(f"**Novelty Score:** {result['novelty_score']}")
|
| 183 |
+
results.extend(result["results"]) # Add results here
|
| 184 |
+
novelty_score += result["novelty_score"] # Update novelty score
|
| 185 |
+
st.write(
|
| 186 |
+
f"<span style='color:yellow'>Total novelty score across all questions (so far): {novelty_score}</span>",
|
| 187 |
+
unsafe_allow_html=True)
|
| 188 |
+
|
| 189 |
+
elif result["type"] == "summary":
|
| 190 |
+
st.write(f"<span style='color:blue'>Total novelty score for question '{result['question']}': {result['total_novelty']}</span>",
|
| 191 |
+
unsafe_allow_html=True)
|
| 192 |
+
st.write(f"<span style='color:blue'>Time taken: {result['time_taken']} seconds</span>",
|
| 193 |
+
unsafe_allow_html=True)
|
| 194 |
+
elif result["type"] == "error":
|
| 195 |
+
st.write(f"<span style='color:red'>Error in thread: {result['message']}</span>",
|
| 196 |
+
unsafe_allow_html=True)
|
| 197 |
+
|
| 198 |
|
| 199 |
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>",
|
| 200 |
unsafe_allow_html=True)
|
| 201 |
return results
|
| 202 |
|
| 203 |
|
| 204 |
+
def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key, judge_model_name):
|
| 205 |
novelty_score = 0
|
| 206 |
results = []
|
| 207 |
|
| 208 |
for i, question in enumerate(questions):
|
| 209 |
+
for result in process_question(question, model_name, open_router_key, openai_api_key, None, judge_model_name):
|
| 210 |
+
if result["type"] == "answer":
|
| 211 |
+
st.write(f"**Question:** {result['question']}")
|
| 212 |
+
st.write(f"**New Answer:**\n{result['answer']}")
|
| 213 |
+
st.write(f"<span style='color:green'>Coherence Score: {result['coherence_score']}</span>",
|
| 214 |
+
unsafe_allow_html=True)
|
| 215 |
+
st.write(f"**Novelty Score:** {result['novelty_score']}")
|
| 216 |
+
results.extend(result["results"])
|
| 217 |
+
novelty_score += result["novelty_score"] # Add to novelty score
|
| 218 |
+
st.write(
|
| 219 |
+
f"<span style='color:yellow'>Total novelty score across processed questions: {novelty_score}</span>",
|
| 220 |
+
unsafe_allow_html=True)
|
| 221 |
+
|
| 222 |
+
elif result["type"] == "summary":
|
| 223 |
+
st.write(f"<span style='color:blue'>Total novelty score for question '{result['question']}': {result['total_novelty']}</span>",
|
| 224 |
+
unsafe_allow_html=True)
|
| 225 |
+
st.write(f"<span style='color:blue'>Time taken: {result['time_taken']} seconds</span>",
|
| 226 |
+
unsafe_allow_html=True)
|
| 227 |
+
|
| 228 |
+
elif result["type"] == "error":
|
| 229 |
+
st.write(f"<span style='color:red'>Error in thread: {result['message']}</span>",
|
| 230 |
+
unsafe_allow_html=True)
|
| 231 |
|
| 232 |
st.write(f"<span style='color:yellow'>Final total novelty score across all questions: {novelty_score}</span>",
|
| 233 |
unsafe_allow_html=True)
|