Update app.py
Browse files
app.py
CHANGED
|
@@ -1,58 +1,58 @@
|
|
| 1 |
import os
|
| 2 |
import io
|
| 3 |
import base64
|
|
|
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
| 6 |
import torchvision.transforms as transforms
|
| 7 |
from PIL import Image
|
| 8 |
from flask import Flask, request, render_template, flash, redirect, url_for, jsonify
|
| 9 |
-
from dotenv import load_dotenv
|
| 10 |
|
| 11 |
-
|
| 12 |
-
# Import necessary classes from your original script / transformers
|
| 13 |
from transformers import (
|
| 14 |
-
|
|
|
|
| 15 |
T5ForConditionalGeneration,
|
| 16 |
T5Tokenizer,
|
| 17 |
-
AutoModelForCausalLM,
|
| 18 |
-
AutoTokenizer,
|
| 19 |
)
|
| 20 |
from transformers.modeling_outputs import BaseModelOutput
|
| 21 |
|
| 22 |
-
load_dotenv()
|
| 23 |
|
| 24 |
# --- Configuration ---
|
| 25 |
-
MODEL_PATH = '/cluster/home/ammaa/Downloads/Projects/CheXpert-Report-Generation/swin-t5-model.pth'
|
| 26 |
SWIN_MODEL_NAME = "microsoft/swin-base-patch4-window7-224"
|
| 27 |
T5_MODEL_NAME = "t5-base"
|
| 28 |
-
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 29 |
-
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
| 30 |
|
| 31 |
if not HF_TOKEN:
|
| 32 |
print("Warning: HUGGING_FACE_HUB_TOKEN environment variable not set. Llama model download might fail.")
|
| 33 |
|
| 34 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
-
UPLOAD_FOLDER = 'uploads'
|
| 36 |
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
| 37 |
|
| 38 |
-
# Ensure the upload folder exists if you use it
|
| 39 |
-
# if not os.path.exists(UPLOAD_FOLDER):
|
| 40 |
-
# os.makedirs(UPLOAD_FOLDER)
|
| 41 |
-
|
| 42 |
# --- Swin-T5 Model Definition ---
|
| 43 |
class ImageCaptioningModel(nn.Module):
|
| 44 |
def __init__(self,
|
| 45 |
swin_model_name=SWIN_MODEL_NAME,
|
| 46 |
t5_model_name=T5_MODEL_NAME):
|
| 47 |
super().__init__()
|
| 48 |
-
|
|
|
|
| 49 |
self.t5 = T5ForConditionalGeneration.from_pretrained(t5_model_name)
|
|
|
|
| 50 |
self.img_proj = nn.Linear(self.swin.config.hidden_size, self.t5.config.d_model)
|
| 51 |
|
| 52 |
def forward(self, images, labels=None):
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
| 56 |
encoder_outputs = BaseModelOutput(last_hidden_state=img_feats_proj)
|
| 57 |
if labels is not None:
|
| 58 |
outputs = self.t5(encoder_outputs=encoder_outputs, labels=labels)
|
|
@@ -75,20 +75,28 @@ def load_swin_t5_model_components():
|
|
| 75 |
# Initialize model structure
|
| 76 |
swin_t5_model = ImageCaptioningModel(swin_model_name=SWIN_MODEL_NAME, t5_model_name=T5_MODEL_NAME)
|
| 77 |
|
| 78 |
-
# Load state dictionary
|
| 79 |
if not os.path.exists(MODEL_PATH):
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
swin_t5_model.to(DEVICE)
|
| 84 |
-
swin_t5_model.eval()
|
| 85 |
print("Swin-T5 Model loaded successfully.")
|
| 86 |
|
| 87 |
-
# Load tokenizer
|
| 88 |
swin_t5_tokenizer = T5Tokenizer.from_pretrained(T5_MODEL_NAME)
|
| 89 |
print("Swin-T5 Tokenizer loaded successfully.")
|
| 90 |
|
| 91 |
-
# Define image transformations
|
| 92 |
transform = transforms.Compose([
|
| 93 |
transforms.Resize((224, 224)),
|
| 94 |
transforms.ToTensor(),
|
|
@@ -99,6 +107,8 @@ def load_swin_t5_model_components():
|
|
| 99 |
|
| 100 |
except Exception as e:
|
| 101 |
print(f"Error loading Swin-T5 model components: {e}")
|
|
|
|
|
|
|
| 102 |
raise
|
| 103 |
|
| 104 |
def load_llama_model_components():
|
|
@@ -106,57 +116,58 @@ def load_llama_model_components():
|
|
| 106 |
global llama_model, llama_tokenizer
|
| 107 |
if not HF_TOKEN:
|
| 108 |
print("Skipping Llama model load: Hugging Face token not found.")
|
| 109 |
-
return
|
| 110 |
|
| 111 |
try:
|
| 112 |
print(f"Loading Llama model ({LLAMA_MODEL_NAME}) components...")
|
| 113 |
-
# Use bfloat16 for memory efficiency if available, otherwise float16/32
|
| 114 |
-
torch_dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float16
|
| 115 |
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
llama_model = AutoModelForCausalLM.from_pretrained(
|
| 118 |
LLAMA_MODEL_NAME,
|
| 119 |
torch_dtype=torch_dtype,
|
| 120 |
-
device_map="auto",
|
| 121 |
-
|
| 122 |
-
# Add quantization config here if needed (e.g., load_in_4bit=True with bitsandbytes)
|
| 123 |
-
# quantization_config=BitsAndBytesConfig(...)
|
| 124 |
)
|
| 125 |
-
llama_model.eval()
|
| 126 |
print("Llama Model and Tokenizer loaded successfully.")
|
| 127 |
-
|
| 128 |
except Exception as e:
|
| 129 |
print(f"Error loading Llama model components: {e}")
|
| 130 |
-
|
| 131 |
llama_model = None
|
| 132 |
llama_tokenizer = None
|
| 133 |
print("WARNING: Chatbot functionality will be disabled due to loading error.")
|
| 134 |
-
# raise # Uncomment this if the chat feature is critical
|
| 135 |
|
| 136 |
# --- Inference Function (Swin-T5) ---
|
| 137 |
def generate_report(image_bytes, selected_vlm, max_length=100):
|
| 138 |
"""Generates a report/caption for the given image bytes using Swin-T5."""
|
| 139 |
global swin_t5_model, swin_t5_tokenizer, transform
|
| 140 |
-
|
| 141 |
-
|
|
|
|
| 142 |
if swin_t5_model is None or swin_t5_tokenizer is None or transform is None:
|
| 143 |
-
|
| 144 |
-
if not all([swin_t5_model, swin_t5_tokenizer, transform]):
|
| 145 |
-
raise RuntimeError("Swin-T5 model components failed to load.")
|
| 146 |
-
else:
|
| 147 |
-
raise RuntimeError("Swin-T5 model components not loaded properly.")
|
| 148 |
-
|
| 149 |
|
| 150 |
if selected_vlm != "swin_t5_chexpert":
|
| 151 |
return "Error: Selected VLM is not supported."
|
| 152 |
|
| 153 |
try:
|
| 154 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 155 |
-
input_image = transform(image).unsqueeze(0).to(DEVICE)
|
| 156 |
|
| 157 |
# Perform inference
|
| 158 |
with torch.no_grad():
|
| 159 |
-
swin_outputs = swin_t5_model.swin(input_image)
|
| 160 |
img_feats = swin_outputs.last_hidden_state
|
| 161 |
img_feats_proj = swin_t5_model.img_proj(img_feats)
|
| 162 |
encoder_outputs = BaseModelOutput(last_hidden_state=img_feats_proj)
|
|
@@ -172,60 +183,52 @@ def generate_report(image_bytes, selected_vlm, max_length=100):
|
|
| 172 |
|
| 173 |
except Exception as e:
|
| 174 |
print(f"Error during Swin-T5 report generation: {e}")
|
|
|
|
| 175 |
return f"Error generating report: {e}"
|
| 176 |
|
| 177 |
-
# --- Chat Function (Llama
|
| 178 |
def generate_chat_response(question, report_context, max_new_tokens=250):
|
| 179 |
"""Generates a chat response using Llama based on the report context."""
|
| 180 |
global llama_model, llama_tokenizer
|
| 181 |
-
if
|
| 182 |
return "Chatbot is currently unavailable."
|
| 183 |
|
| 184 |
-
# System prompt to guide the LLM
|
| 185 |
system_prompt = "You are a helpful medical assistant. I'm a medical student, your task is to help me understand the following report."
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
{"role": "system", "content": system_prompt},
|
| 189 |
-
{"role": "user", "content": f"Based on the following report:\n\n---\n{report_context}\n---\n\nPlease answer this question: {question}"}
|
| 190 |
-
]
|
| 191 |
|
| 192 |
-
# Prepare input for the model
|
| 193 |
try:
|
| 194 |
-
#
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
# Set terminators for generation
|
| 202 |
-
# Common terminators for Llama 3 Instruct
|
| 203 |
-
terminators = [
|
| 204 |
-
llama_tokenizer.eos_token_id,
|
| 205 |
-
llama_tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 206 |
-
]
|
| 207 |
|
| 208 |
with torch.no_grad():
|
| 209 |
outputs = llama_model.generate(
|
| 210 |
-
input_ids,
|
|
|
|
| 211 |
max_new_tokens=max_new_tokens,
|
| 212 |
-
eos_token_id=
|
| 213 |
-
do_sample=True,
|
| 214 |
temperature=0.6,
|
| 215 |
top_p=0.9,
|
| 216 |
-
pad_token_id=llama_tokenizer.eos_token_id
|
| 217 |
)
|
| 218 |
|
| 219 |
-
#
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
| 223 |
|
| 224 |
except Exception as e:
|
| 225 |
print(f"Error during Llama chat generation: {e}")
|
|
|
|
| 226 |
return f"Error generating chat response: {e}"
|
| 227 |
|
| 228 |
-
|
| 229 |
# --- Flask Application Setup ---
|
| 230 |
app = Flask(__name__)
|
| 231 |
app.secret_key = os.urandom(24)
|
|
@@ -234,18 +237,18 @@ app.secret_key = os.urandom(24)
|
|
| 234 |
print("Loading models on application startup...")
|
| 235 |
try:
|
| 236 |
load_swin_t5_model_components()
|
| 237 |
-
load_llama_model_components()
|
| 238 |
print("Model loading complete.")
|
| 239 |
except Exception as e:
|
| 240 |
print(f"FATAL ERROR during model loading: {e}")
|
| 241 |
-
|
| 242 |
-
#
|
|
|
|
| 243 |
|
| 244 |
def allowed_file(filename):
|
| 245 |
return '.' in filename and \
|
| 246 |
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 247 |
|
| 248 |
-
# ---- NEW: Function to Parse Filename ----
|
| 249 |
def parse_patient_info(filename):
|
| 250 |
"""
|
| 251 |
Parses a filename like '00069-34-Frontal-AP-63.0-Male-White.png'
|
|
@@ -255,56 +258,49 @@ def parse_patient_info(filename):
|
|
| 255 |
try:
|
| 256 |
base_name = os.path.splitext(filename)[0]
|
| 257 |
parts = base_name.split('-')
|
| 258 |
-
|
| 259 |
-
if len(parts) < 5: # Need at least initial parts, age, gender, ethnicity
|
| 260 |
print(f"Warning: Filename '{filename}' has fewer parts than expected.")
|
| 261 |
return None
|
| 262 |
|
| 263 |
ethnicity = parts[-1]
|
| 264 |
gender = parts[-2]
|
| 265 |
age_str = parts[-3]
|
| 266 |
-
# Handle potential '.0' in age and convert to int
|
| 267 |
try:
|
| 268 |
age = int(float(age_str))
|
| 269 |
except ValueError:
|
| 270 |
print(f"Warning: Could not parse age '{age_str}' from filename '{filename}'.")
|
| 271 |
-
return None
|
| 272 |
|
| 273 |
-
# Assume view is everything between the second part (index 1) and the age part (index -3)
|
| 274 |
view_parts = parts[2:-3]
|
| 275 |
-
view = '-'.join(view_parts) if view_parts else "Unknown"
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
print(f"Warning: Unusual gender '{gender}' found in filename '{filename}'.")
|
| 280 |
-
# Decide whether to return None or keep it
|
| 281 |
|
| 282 |
return {
|
| 283 |
'view': view,
|
| 284 |
'age': age,
|
| 285 |
-
'gender': gender.capitalize(),
|
| 286 |
-
'ethnicity': ethnicity.capitalize()
|
| 287 |
}
|
| 288 |
except IndexError:
|
| 289 |
print(f"Error parsing filename '{filename}': Index out of bounds.")
|
| 290 |
return None
|
| 291 |
except Exception as e:
|
| 292 |
print(f"Error parsing filename '{filename}': {e}")
|
|
|
|
| 293 |
return None
|
| 294 |
|
| 295 |
# --- Routes ---
|
| 296 |
-
|
| 297 |
@app.route('/', methods=['GET'])
|
| 298 |
def index():
|
| 299 |
-
"""Renders the main page."""
|
| 300 |
chatbot_available = bool(llama_model and llama_tokenizer)
|
| 301 |
return render_template('index.html', chatbot_available=chatbot_available)
|
| 302 |
|
| 303 |
@app.route('/predict', methods=['POST'])
|
| 304 |
def predict():
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
patient_info = None # Initialize patient_info
|
| 308 |
|
| 309 |
if 'image' not in request.files:
|
| 310 |
flash('No image file part in the request.', 'danger')
|
|
@@ -317,8 +313,8 @@ def predict():
|
|
| 317 |
if not (10 <= max_length <= 512):
|
| 318 |
raise ValueError("Max length must be between 10 and 512.")
|
| 319 |
except ValueError as e:
|
| 320 |
-
|
| 321 |
-
|
| 322 |
|
| 323 |
if file.filename == '':
|
| 324 |
flash('No image selected for uploading.', 'warning')
|
|
@@ -328,46 +324,39 @@ def predict():
|
|
| 328 |
try:
|
| 329 |
image_bytes = file.read()
|
| 330 |
|
| 331 |
-
# ---- ADDED: Parse filename ----
|
| 332 |
original_filename = file.filename
|
| 333 |
patient_info = parse_patient_info(original_filename)
|
| 334 |
if patient_info:
|
| 335 |
print(f"Parsed Patient Info: {patient_info}")
|
| 336 |
else:
|
| 337 |
print(f"Could not parse patient info from filename: {original_filename}")
|
| 338 |
-
# ---- END ADDED ----
|
| 339 |
|
| 340 |
-
# Generate report using Swin-T5
|
| 341 |
report = generate_report(image_bytes, vlm_choice, max_length)
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
patient_info=patient_info, # Pass parsed info even if report failed
|
| 352 |
-
chatbot_available=chatbot_available)
|
| 353 |
-
|
| 354 |
|
| 355 |
image_data = base64.b64encode(image_bytes).decode('utf-8')
|
| 356 |
|
| 357 |
-
# Render the page with results AND the report text for JS/Chat
|
| 358 |
return render_template('index.html',
|
| 359 |
report=report,
|
| 360 |
image_data=image_data,
|
| 361 |
-
patient_info=patient_info,
|
| 362 |
-
chatbot_available=chatbot_available)
|
| 363 |
|
| 364 |
except FileNotFoundError as fnf_error:
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
except RuntimeError as rt_error:
|
| 369 |
flash(f'Model loading error: {rt_error}. Please check server logs.', 'danger')
|
| 370 |
-
print(f"Runtime error during prediction
|
| 371 |
return redirect(url_for('index'))
|
| 372 |
except Exception as e:
|
| 373 |
flash(f'An unexpected error occurred during prediction: {e}', 'danger')
|
|
@@ -377,12 +366,10 @@ def predict():
|
|
| 377 |
flash('Invalid image file type. Allowed types: png, jpg, jpeg.', 'danger')
|
| 378 |
return redirect(url_for('index'))
|
| 379 |
|
| 380 |
-
# --- New Chat Endpoint ---
|
| 381 |
@app.route('/chat', methods=['POST'])
|
| 382 |
def chat():
|
| 383 |
-
"""Handles chat requests based on the generated report."""
|
| 384 |
if not llama_model or not llama_tokenizer:
|
| 385 |
-
return jsonify({"answer": "Chatbot is not available."}), 503
|
| 386 |
|
| 387 |
data = request.get_json()
|
| 388 |
if not data or 'question' not in data or 'report_context' not in data:
|
|
@@ -396,8 +383,8 @@ def chat():
|
|
| 396 |
return jsonify({"answer": answer})
|
| 397 |
except Exception as e:
|
| 398 |
print(f"Error in /chat endpoint: {e}")
|
|
|
|
| 399 |
return jsonify({"error": "Failed to generate chat response"}), 500
|
| 400 |
|
| 401 |
if __name__ == '__main__':
|
| 402 |
-
|
| 403 |
-
app.run(host='0.0.0.0', port=5000, debug=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import io
|
| 3 |
import base64
|
| 4 |
+
import traceback
|
| 5 |
import torch
|
| 6 |
import torch.nn as nn
|
| 7 |
import torchvision.transforms as transforms
|
| 8 |
from PIL import Image
|
| 9 |
from flask import Flask, request, render_template, flash, redirect, url_for, jsonify
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
|
| 12 |
+
# Use the auto classes to avoid version-specific direct imports
|
|
|
|
| 13 |
from transformers import (
|
| 14 |
+
AutoModel, # used for vision (Swin)
|
| 15 |
+
AutoImageProcessor, # optional: if you want processor instead of torchvision
|
| 16 |
T5ForConditionalGeneration,
|
| 17 |
T5Tokenizer,
|
| 18 |
+
AutoModelForCausalLM,
|
| 19 |
+
AutoTokenizer,
|
| 20 |
)
|
| 21 |
from transformers.modeling_outputs import BaseModelOutput
|
| 22 |
|
| 23 |
+
load_dotenv() # Load environment variables from .env file
|
| 24 |
|
| 25 |
# --- Configuration ---
|
| 26 |
+
MODEL_PATH = '/cluster/home/ammaa/Downloads/Projects/CheXpert-Report-Generation/swin-t5-model.pth'
|
| 27 |
SWIN_MODEL_NAME = "microsoft/swin-base-patch4-window7-224"
|
| 28 |
T5_MODEL_NAME = "t5-base"
|
| 29 |
+
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 30 |
+
HF_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN") # Hugging Face token (optional)
|
| 31 |
|
| 32 |
if not HF_TOKEN:
|
| 33 |
print("Warning: HUGGING_FACE_HUB_TOKEN environment variable not set. Llama model download might fail.")
|
| 34 |
|
| 35 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
+
UPLOAD_FOLDER = 'uploads'
|
| 37 |
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# --- Swin-T5 Model Definition ---
|
| 40 |
class ImageCaptioningModel(nn.Module):
|
| 41 |
def __init__(self,
|
| 42 |
swin_model_name=SWIN_MODEL_NAME,
|
| 43 |
t5_model_name=T5_MODEL_NAME):
|
| 44 |
super().__init__()
|
| 45 |
+
# Use AutoModel for the vision backbone (works across transformer versions)
|
| 46 |
+
self.swin = AutoModel.from_pretrained(swin_model_name)
|
| 47 |
self.t5 = T5ForConditionalGeneration.from_pretrained(t5_model_name)
|
| 48 |
+
# Project swin hidden states to T5 d_model
|
| 49 |
self.img_proj = nn.Linear(self.swin.config.hidden_size, self.t5.config.d_model)
|
| 50 |
|
| 51 |
def forward(self, images, labels=None):
|
| 52 |
+
# images: expected shape (batch, channels, height, width)
|
| 53 |
+
swin_outputs = self.swin(images, return_dict=True)
|
| 54 |
+
img_feats = swin_outputs.last_hidden_state # (batch, seq_len, hidden)
|
| 55 |
+
img_feats_proj = self.img_proj(img_feats) # project to T5 d_model
|
| 56 |
encoder_outputs = BaseModelOutput(last_hidden_state=img_feats_proj)
|
| 57 |
if labels is not None:
|
| 58 |
outputs = self.t5(encoder_outputs=encoder_outputs, labels=labels)
|
|
|
|
| 75 |
# Initialize model structure
|
| 76 |
swin_t5_model = ImageCaptioningModel(swin_model_name=SWIN_MODEL_NAME, t5_model_name=T5_MODEL_NAME)
|
| 77 |
|
| 78 |
+
# Load state dictionary if provided
|
| 79 |
if not os.path.exists(MODEL_PATH):
|
| 80 |
+
raise FileNotFoundError(f"Swin-T5 Model file not found at {MODEL_PATH}.")
|
| 81 |
+
|
| 82 |
+
# Load state dict into model (map_location ensures correct device)
|
| 83 |
+
state = torch.load(MODEL_PATH, map_location=DEVICE)
|
| 84 |
+
# If the saved state is a dict containing model key (common), attempt to pull it
|
| 85 |
+
if isinstance(state, dict) and "model_state_dict" in state and len(state) > 1:
|
| 86 |
+
# typical saved checkpoint structure { 'epoch':..., 'model_state_dict':..., ... }
|
| 87 |
+
swin_t5_model.load_state_dict(state["model_state_dict"])
|
| 88 |
+
else:
|
| 89 |
+
swin_t5_model.load_state_dict(state)
|
| 90 |
+
|
| 91 |
swin_t5_model.to(DEVICE)
|
| 92 |
+
swin_t5_model.eval()
|
| 93 |
print("Swin-T5 Model loaded successfully.")
|
| 94 |
|
| 95 |
+
# Load tokenizer for T5
|
| 96 |
swin_t5_tokenizer = T5Tokenizer.from_pretrained(T5_MODEL_NAME)
|
| 97 |
print("Swin-T5 Tokenizer loaded successfully.")
|
| 98 |
|
| 99 |
+
# Define (simple) image transformations
|
| 100 |
transform = transforms.Compose([
|
| 101 |
transforms.Resize((224, 224)),
|
| 102 |
transforms.ToTensor(),
|
|
|
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
print(f"Error loading Swin-T5 model components: {e}")
|
| 110 |
+
print(traceback.format_exc())
|
| 111 |
+
# Re-raise so startup knows loading failed (your code caught it)
|
| 112 |
raise
|
| 113 |
|
| 114 |
def load_llama_model_components():
|
|
|
|
| 116 |
global llama_model, llama_tokenizer
|
| 117 |
if not HF_TOKEN:
|
| 118 |
print("Skipping Llama model load: Hugging Face token not found.")
|
| 119 |
+
return
|
| 120 |
|
| 121 |
try:
|
| 122 |
print(f"Loading Llama model ({LLAMA_MODEL_NAME}) components...")
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
# Choose an appropriate dtype for loading
|
| 125 |
+
if torch.cuda.is_available():
|
| 126 |
+
# prefer bf16 if supported to save memory on modern GPUs
|
| 127 |
+
try:
|
| 128 |
+
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
| 129 |
+
except Exception:
|
| 130 |
+
torch_dtype = torch.float16
|
| 131 |
+
else:
|
| 132 |
+
torch_dtype = torch.float32
|
| 133 |
+
|
| 134 |
+
# Use use_auth_token parameter for private models / gated access
|
| 135 |
+
llama_tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_auth_token=HF_TOKEN)
|
| 136 |
llama_model = AutoModelForCausalLM.from_pretrained(
|
| 137 |
LLAMA_MODEL_NAME,
|
| 138 |
torch_dtype=torch_dtype,
|
| 139 |
+
device_map="auto",
|
| 140 |
+
use_auth_token=HF_TOKEN
|
|
|
|
|
|
|
| 141 |
)
|
| 142 |
+
llama_model.eval()
|
| 143 |
print("Llama Model and Tokenizer loaded successfully.")
|
|
|
|
| 144 |
except Exception as e:
|
| 145 |
print(f"Error loading Llama model components: {e}")
|
| 146 |
+
print(traceback.format_exc())
|
| 147 |
llama_model = None
|
| 148 |
llama_tokenizer = None
|
| 149 |
print("WARNING: Chatbot functionality will be disabled due to loading error.")
|
|
|
|
| 150 |
|
| 151 |
# --- Inference Function (Swin-T5) ---
|
| 152 |
def generate_report(image_bytes, selected_vlm, max_length=100):
|
| 153 |
"""Generates a report/caption for the given image bytes using Swin-T5."""
|
| 154 |
global swin_t5_model, swin_t5_tokenizer, transform
|
| 155 |
+
# Ensure components are loaded (attempt to load if missing)
|
| 156 |
+
if swin_t5_model is None or swin_t5_tokenizer is None or transform is None:
|
| 157 |
+
load_swin_t5_model_components()
|
| 158 |
if swin_t5_model is None or swin_t5_tokenizer is None or transform is None:
|
| 159 |
+
raise RuntimeError("Swin-T5 model components failed to load.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
if selected_vlm != "swin_t5_chexpert":
|
| 162 |
return "Error: Selected VLM is not supported."
|
| 163 |
|
| 164 |
try:
|
| 165 |
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 166 |
+
input_image = transform(image).unsqueeze(0).to(DEVICE)
|
| 167 |
|
| 168 |
# Perform inference
|
| 169 |
with torch.no_grad():
|
| 170 |
+
swin_outputs = swin_t5_model.swin(input_image, return_dict=True)
|
| 171 |
img_feats = swin_outputs.last_hidden_state
|
| 172 |
img_feats_proj = swin_t5_model.img_proj(img_feats)
|
| 173 |
encoder_outputs = BaseModelOutput(last_hidden_state=img_feats_proj)
|
|
|
|
| 183 |
|
| 184 |
except Exception as e:
|
| 185 |
print(f"Error during Swin-T5 report generation: {e}")
|
| 186 |
+
print(traceback.format_exc())
|
| 187 |
return f"Error generating report: {e}"
|
| 188 |
|
| 189 |
+
# --- Chat Function (Llama) ---
|
| 190 |
def generate_chat_response(question, report_context, max_new_tokens=250):
|
| 191 |
"""Generates a chat response using Llama based on the report context."""
|
| 192 |
global llama_model, llama_tokenizer
|
| 193 |
+
if llama_model is None or llama_tokenizer is None:
|
| 194 |
return "Chatbot is currently unavailable."
|
| 195 |
|
|
|
|
| 196 |
system_prompt = "You are a helpful medical assistant. I'm a medical student, your task is to help me understand the following report."
|
| 197 |
+
prompt = (f"{system_prompt}\n\nBased on the following report:\n\n---\n{report_context}\n---\n\n"
|
| 198 |
+
f"Please answer this question: {question}\n")
|
|
|
|
|
|
|
|
|
|
| 199 |
|
|
|
|
| 200 |
try:
|
| 201 |
+
# Tokenize and move to model device
|
| 202 |
+
inputs = llama_tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 203 |
+
input_ids = inputs["input_ids"].to(next(llama_model.parameters()).device)
|
| 204 |
+
attention_mask = inputs.get("attention_mask", None)
|
| 205 |
+
if attention_mask is not None:
|
| 206 |
+
attention_mask = attention_mask.to(input_ids.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
with torch.no_grad():
|
| 209 |
outputs = llama_model.generate(
|
| 210 |
+
input_ids=input_ids,
|
| 211 |
+
attention_mask=attention_mask,
|
| 212 |
max_new_tokens=max_new_tokens,
|
| 213 |
+
eos_token_id=llama_tokenizer.eos_token_id,
|
| 214 |
+
do_sample=True,
|
| 215 |
temperature=0.6,
|
| 216 |
top_p=0.9,
|
| 217 |
+
pad_token_id=llama_tokenizer.eos_token_id
|
| 218 |
)
|
| 219 |
|
| 220 |
+
# Returned outputs: (batch, seq_len). We want the newly generated part after the prompt.
|
| 221 |
+
generated = outputs[0]
|
| 222 |
+
# Remove input prompt tokens to keep only the response
|
| 223 |
+
response_ids = generated[input_ids.shape[-1]:]
|
| 224 |
+
response_text = llama_tokenizer.decode(response_ids, skip_special_tokens=True).strip()
|
| 225 |
+
return response_text
|
| 226 |
|
| 227 |
except Exception as e:
|
| 228 |
print(f"Error during Llama chat generation: {e}")
|
| 229 |
+
print(traceback.format_exc())
|
| 230 |
return f"Error generating chat response: {e}"
|
| 231 |
|
|
|
|
| 232 |
# --- Flask Application Setup ---
|
| 233 |
app = Flask(__name__)
|
| 234 |
app.secret_key = os.urandom(24)
|
|
|
|
| 237 |
print("Loading models on application startup...")
|
| 238 |
try:
|
| 239 |
load_swin_t5_model_components()
|
| 240 |
+
load_llama_model_components()
|
| 241 |
print("Model loading complete.")
|
| 242 |
except Exception as e:
|
| 243 |
print(f"FATAL ERROR during model loading: {e}")
|
| 244 |
+
print(traceback.format_exc())
|
| 245 |
+
# Continue with limited functionality (report generation may fail if swin-t5 didn't load)
|
| 246 |
+
# Optionally: exit(1)
|
| 247 |
|
| 248 |
def allowed_file(filename):
|
| 249 |
return '.' in filename and \
|
| 250 |
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 251 |
|
|
|
|
| 252 |
def parse_patient_info(filename):
|
| 253 |
"""
|
| 254 |
Parses a filename like '00069-34-Frontal-AP-63.0-Male-White.png'
|
|
|
|
| 258 |
try:
|
| 259 |
base_name = os.path.splitext(filename)[0]
|
| 260 |
parts = base_name.split('-')
|
| 261 |
+
if len(parts) < 5:
|
|
|
|
| 262 |
print(f"Warning: Filename '{filename}' has fewer parts than expected.")
|
| 263 |
return None
|
| 264 |
|
| 265 |
ethnicity = parts[-1]
|
| 266 |
gender = parts[-2]
|
| 267 |
age_str = parts[-3]
|
|
|
|
| 268 |
try:
|
| 269 |
age = int(float(age_str))
|
| 270 |
except ValueError:
|
| 271 |
print(f"Warning: Could not parse age '{age_str}' from filename '{filename}'.")
|
| 272 |
+
return None
|
| 273 |
|
|
|
|
| 274 |
view_parts = parts[2:-3]
|
| 275 |
+
view = '-'.join(view_parts) if view_parts else "Unknown"
|
| 276 |
|
| 277 |
+
if gender.lower() not in ['male', 'female', 'other', 'unknown']:
|
| 278 |
+
print(f"Warning: Unusual gender '{gender}' found in filename '{filename}'.")
|
|
|
|
|
|
|
| 279 |
|
| 280 |
return {
|
| 281 |
'view': view,
|
| 282 |
'age': age,
|
| 283 |
+
'gender': gender.capitalize(),
|
| 284 |
+
'ethnicity': ethnicity.capitalize()
|
| 285 |
}
|
| 286 |
except IndexError:
|
| 287 |
print(f"Error parsing filename '{filename}': Index out of bounds.")
|
| 288 |
return None
|
| 289 |
except Exception as e:
|
| 290 |
print(f"Error parsing filename '{filename}': {e}")
|
| 291 |
+
print(traceback.format_exc())
|
| 292 |
return None
|
| 293 |
|
| 294 |
# --- Routes ---
|
|
|
|
| 295 |
@app.route('/', methods=['GET'])
|
| 296 |
def index():
|
|
|
|
| 297 |
chatbot_available = bool(llama_model and llama_tokenizer)
|
| 298 |
return render_template('index.html', chatbot_available=chatbot_available)
|
| 299 |
|
| 300 |
@app.route('/predict', methods=['POST'])
|
| 301 |
def predict():
|
| 302 |
+
chatbot_available = bool(llama_model and llama_tokenizer)
|
| 303 |
+
patient_info = None
|
|
|
|
| 304 |
|
| 305 |
if 'image' not in request.files:
|
| 306 |
flash('No image file part in the request.', 'danger')
|
|
|
|
| 313 |
if not (10 <= max_length <= 512):
|
| 314 |
raise ValueError("Max length must be between 10 and 512.")
|
| 315 |
except ValueError as e:
|
| 316 |
+
flash(f'Invalid Max Length value: {e}', 'danger')
|
| 317 |
+
return redirect(url_for('index'))
|
| 318 |
|
| 319 |
if file.filename == '':
|
| 320 |
flash('No image selected for uploading.', 'warning')
|
|
|
|
| 324 |
try:
|
| 325 |
image_bytes = file.read()
|
| 326 |
|
|
|
|
| 327 |
original_filename = file.filename
|
| 328 |
patient_info = parse_patient_info(original_filename)
|
| 329 |
if patient_info:
|
| 330 |
print(f"Parsed Patient Info: {patient_info}")
|
| 331 |
else:
|
| 332 |
print(f"Could not parse patient info from filename: {original_filename}")
|
|
|
|
| 333 |
|
|
|
|
| 334 |
report = generate_report(image_bytes, vlm_choice, max_length)
|
| 335 |
|
| 336 |
+
if isinstance(report, str) and report.startswith("Error"):
|
| 337 |
+
flash(f'Report Generation Failed: {report}', 'danger')
|
| 338 |
+
image_data = base64.b64encode(image_bytes).decode('utf-8')
|
| 339 |
+
return render_template('index.html',
|
| 340 |
+
report=None,
|
| 341 |
+
image_data=image_data,
|
| 342 |
+
patient_info=patient_info,
|
| 343 |
+
chatbot_available=chatbot_available)
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |
image_data = base64.b64encode(image_bytes).decode('utf-8')
|
| 346 |
|
|
|
|
| 347 |
return render_template('index.html',
|
| 348 |
report=report,
|
| 349 |
image_data=image_data,
|
| 350 |
+
patient_info=patient_info,
|
| 351 |
+
chatbot_available=chatbot_available)
|
| 352 |
|
| 353 |
except FileNotFoundError as fnf_error:
|
| 354 |
+
flash(f'Model file not found: {fnf_error}. Please check server configuration.', 'danger')
|
| 355 |
+
print(f"Model file error: {fnf_error}\n{traceback.format_exc()}")
|
| 356 |
+
return redirect(url_for('index'))
|
| 357 |
except RuntimeError as rt_error:
|
| 358 |
flash(f'Model loading error: {rt_error}. Please check server logs.', 'danger')
|
| 359 |
+
print(f"Runtime error during prediction: {rt_error}\n{traceback.format_exc()}")
|
| 360 |
return redirect(url_for('index'))
|
| 361 |
except Exception as e:
|
| 362 |
flash(f'An unexpected error occurred during prediction: {e}', 'danger')
|
|
|
|
| 366 |
flash('Invalid image file type. Allowed types: png, jpg, jpeg.', 'danger')
|
| 367 |
return redirect(url_for('index'))
|
| 368 |
|
|
|
|
| 369 |
@app.route('/chat', methods=['POST'])
|
| 370 |
def chat():
|
|
|
|
| 371 |
if not llama_model or not llama_tokenizer:
|
| 372 |
+
return jsonify({"answer": "Chatbot is not available."}), 503
|
| 373 |
|
| 374 |
data = request.get_json()
|
| 375 |
if not data or 'question' not in data or 'report_context' not in data:
|
|
|
|
| 383 |
return jsonify({"answer": answer})
|
| 384 |
except Exception as e:
|
| 385 |
print(f"Error in /chat endpoint: {e}")
|
| 386 |
+
print(traceback.format_exc())
|
| 387 |
return jsonify({"error": "Failed to generate chat response"}), 500
|
| 388 |
|
| 389 |
if __name__ == '__main__':
|
| 390 |
+
app.run(host='0.0.0.0', port=5000, debug=False)
|
|
|