Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
#from transformers import AutoModelForCausalLM, AutoProcessor
|
| 3 |
+
|
| 4 |
+
# Load the model and processor
|
| 5 |
+
model_id = "microsoft/Phi-3-vision-128k-instruct"
|
| 6 |
+
#model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto", _attn_implementation='flash_attention_2')
|
| 7 |
+
#processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 8 |
+
|
| 9 |
+
# Define the function to generate text
|
| 10 |
+
def generate_text(image, prompt):
|
| 11 |
+
# Process the input
|
| 12 |
+
inputs = ""
|
| 13 |
+
|
| 14 |
+
# Generate the text
|
| 15 |
+
generation_args = {
|
| 16 |
+
"max_new_tokens": 500,
|
| 17 |
+
"temperature": 0.0,
|
| 18 |
+
"do_sample": False,
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
return image + prompt
|
| 22 |
+
|
| 23 |
+
# Create the Gradio application
|
| 24 |
+
gr.Interface(
|
| 25 |
+
fn=generate_text,
|
| 26 |
+
inputs=[
|
| 27 |
+
gr.Image(type="pil"),
|
| 28 |
+
gr.Textbox(label="Prompt")
|
| 29 |
+
],
|
| 30 |
+
outputs=gr.Textbox(),
|
| 31 |
+
title="Phi-3-Vision Model",
|
| 32 |
+
description="Generate text based on an image and prompt using the Phi-3-Vision model."
|
| 33 |
+
).launch(share=True)
|