Spaces:
Runtime error
Runtime error
Update policy.py
Browse files
policy.py
CHANGED
|
@@ -10,12 +10,12 @@ CHECKPOINT_DIR = "checkpoints"
|
|
| 10 |
def load_policy_model(lr: float = 1e-6):
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 12 |
|
| 13 |
-
# Trainable policy model
|
| 14 |
policy_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 15 |
policy_model.to("cuda")
|
| 16 |
policy_model.train()
|
| 17 |
|
| 18 |
-
#
|
| 19 |
for name, param in policy_model.named_parameters():
|
| 20 |
param.requires_grad = ("lm_head" in name)
|
| 21 |
|
|
@@ -25,20 +25,13 @@ def load_policy_model(lr: float = 1e-6):
|
|
| 25 |
)
|
| 26 |
policy_model.optimizer = optimizer
|
| 27 |
|
| 28 |
-
# Frozen generation model
|
| 29 |
gen_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 30 |
-
gen_model.to("cuda")
|
| 31 |
gen_model.eval()
|
| 32 |
for p in gen_model.parameters():
|
| 33 |
p.requires_grad_(False)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
ref_model = copy.deepcopy(gen_model)
|
| 37 |
-
ref_model.eval()
|
| 38 |
-
for p in ref_model.parameters():
|
| 39 |
-
p.requires_grad_(False)
|
| 40 |
-
|
| 41 |
-
return policy_model, gen_model, ref_model, tokenizer
|
| 42 |
|
| 43 |
|
| 44 |
def save_checkpoint(policy_model, step: int, ckpt_dir: str = CHECKPOINT_DIR):
|
|
@@ -55,11 +48,3 @@ def save_checkpoint(policy_model, step: int, ckpt_dir: str = CHECKPOINT_DIR):
|
|
| 55 |
path,
|
| 56 |
)
|
| 57 |
print(f"[CKPT] Saved checkpoint at {path}")
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def load_checkpoint(policy_model, optimizer, ckpt_path: str):
|
| 61 |
-
ckpt = torch.load(ckpt_path, map_location="cuda")
|
| 62 |
-
policy_model.load_state_dict(ckpt["model_state_dict"])
|
| 63 |
-
if optimizer is not None and ckpt.get("optimizer_state_dict") is not None:
|
| 64 |
-
optimizer.load_state_dict(ckpt["optimizer_state_dict"])
|
| 65 |
-
print(f"[CKPT] Loaded checkpoint from {ckpt_path} at step={ckpt.get('step')}")
|
|
|
|
| 10 |
def load_policy_model(lr: float = 1e-6):
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 12 |
|
| 13 |
+
# Trainable policy model on GPU
|
| 14 |
policy_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 15 |
policy_model.to("cuda")
|
| 16 |
policy_model.train()
|
| 17 |
|
| 18 |
+
# Train only lm_head
|
| 19 |
for name, param in policy_model.named_parameters():
|
| 20 |
param.requires_grad = ("lm_head" in name)
|
| 21 |
|
|
|
|
| 25 |
)
|
| 26 |
policy_model.optimizer = optimizer
|
| 27 |
|
| 28 |
+
# Frozen generation model on CPU (no .to("cuda"))
|
| 29 |
gen_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
|
|
|
| 30 |
gen_model.eval()
|
| 31 |
for p in gen_model.parameters():
|
| 32 |
p.requires_grad_(False)
|
| 33 |
|
| 34 |
+
return policy_model, gen_model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
def save_checkpoint(policy_model, step: int, ckpt_dir: str = CHECKPOINT_DIR):
|
|
|
|
| 48 |
path,
|
| 49 |
)
|
| 50 |
print(f"[CKPT] Saved checkpoint at {path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|