File size: 5,767 Bytes
f07a1a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""

Performance Optimization Module for ProVerBs Ultimate Brain

- Caching responses

- Request batching

- Async processing

- Memory management

"""

import functools
import hashlib
import json
import time
from typing import Any, Dict, Optional
from datetime import datetime, timedelta
import logging

logger = logging.getLogger(__name__)

class PerformanceCache:
    """In-memory cache with TTL for responses"""
    
    def __init__(self, max_size: int = 1000, ttl_seconds: int = 3600):
        self.cache: Dict[str, Dict[str, Any]] = {}
        self.max_size = max_size
        self.ttl_seconds = ttl_seconds
    
    def _generate_key(self, query: str, mode: str, ai_provider: str) -> str:
        """Generate cache key from query parameters"""
        content = f"{query}:{mode}:{ai_provider}"
        return hashlib.md5(content.encode()).hexdigest()
    
    def get(self, query: str, mode: str, ai_provider: str) -> Optional[Any]:
        """Get cached response if available and not expired"""
        key = self._generate_key(query, mode, ai_provider)
        
        if key in self.cache:
            entry = self.cache[key]
            if datetime.now() < entry['expires']:
                logger.info(f"Cache HIT for query: {query[:50]}...")
                return entry['response']
            else:
                del self.cache[key]
                logger.info(f"Cache EXPIRED for query: {query[:50]}...")
        
        logger.info(f"Cache MISS for query: {query[:50]}...")
        return None
    
    def set(self, query: str, mode: str, ai_provider: str, response: Any):
        """Cache a response with TTL"""
        # If cache is full, remove oldest entry
        if len(self.cache) >= self.max_size:
            oldest_key = min(self.cache.keys(), key=lambda k: self.cache[k]['timestamp'])
            del self.cache[oldest_key]
        
        key = self._generate_key(query, mode, ai_provider)
        self.cache[key] = {
            'response': response,
            'timestamp': datetime.now(),
            'expires': datetime.now() + timedelta(seconds=self.ttl_seconds)
        }
        logger.info(f"Cached response for query: {query[:50]}...")
    
    def clear(self):
        """Clear all cache"""
        self.cache.clear()
        logger.info("Cache cleared")
    
    def get_stats(self) -> Dict[str, Any]:
        """Get cache statistics"""
        return {
            "size": len(self.cache),
            "max_size": self.max_size,
            "ttl_seconds": self.ttl_seconds,
            "oldest_entry": min([e['timestamp'] for e in self.cache.values()]) if self.cache else None
        }


class PerformanceMonitor:
    """Monitor and log performance metrics"""
    
    def __init__(self):
        self.metrics = {
            "total_requests": 0,
            "cache_hits": 0,
            "cache_misses": 0,
            "avg_response_time": 0.0,
            "total_response_time": 0.0,
            "errors": 0
        }
    
    def record_request(self, response_time: float, cached: bool = False, error: bool = False):
        """Record request metrics"""
        self.metrics["total_requests"] += 1
        
        if cached:
            self.metrics["cache_hits"] += 1
        else:
            self.metrics["cache_misses"] += 1
        
        if error:
            self.metrics["errors"] += 1
        else:
            self.metrics["total_response_time"] += response_time
            self.metrics["avg_response_time"] = (
                self.metrics["total_response_time"] / 
                (self.metrics["total_requests"] - self.metrics["errors"])
            )
    
    def get_metrics(self) -> Dict[str, Any]:
        """Get current metrics"""
        cache_hit_rate = 0.0
        if self.metrics["total_requests"] > 0:
            cache_hit_rate = self.metrics["cache_hits"] / self.metrics["total_requests"] * 100
        
        return {
            **self.metrics,
            "cache_hit_rate": f"{cache_hit_rate:.2f}%"
        }
    
    def reset(self):
        """Reset metrics"""
        self.metrics = {
            "total_requests": 0,
            "cache_hits": 0,
            "cache_misses": 0,
            "avg_response_time": 0.0,
            "total_response_time": 0.0,
            "errors": 0
        }


# Global instances
performance_cache = PerformanceCache(max_size=500, ttl_seconds=1800)  # 30 min TTL
performance_monitor = PerformanceMonitor()


def with_caching(func):
    """Decorator to add caching to async functions"""
    @functools.wraps(func)
    async def wrapper(query: str, mode: str, ai_provider: str, *args, **kwargs):
        start_time = time.time()
        
        # Try cache first
        cached_response = performance_cache.get(query, mode, ai_provider)
        if cached_response is not None:
            response_time = time.time() - start_time
            performance_monitor.record_request(response_time, cached=True)
            return cached_response
        
        # Execute function
        try:
            response = await func(query, mode, ai_provider, *args, **kwargs)
            
            # Cache successful response
            performance_cache.set(query, mode, ai_provider, response)
            
            response_time = time.time() - start_time
            performance_monitor.record_request(response_time, cached=False)
            
            return response
        except Exception as e:
            response_time = time.time() - start_time
            performance_monitor.record_request(response_time, cached=False, error=True)
            raise e
    
    return wrapper