""" ================================================================================ UNIFIED AI REASONING BRAIN – CORE SYSTEM (PROPRIETARY) ================================================================================ © 2025 Solomon 8888. All Rights Reserved. PROPRIETARY LICENSE – FREE TO USE --------------------------------- This software is provided to you at no monetary cost for use within your applications. You are granted a **non‑exclusive, royalty‑free licence** to run the software *as‑is*. The following actions are strictly prohibited: * Modifying, adapting, or creating derivative works of this source code. * Copying, redistributing, or publicly disclosing the source code in any form (including posting online, publishing, or sharing with third parties). * Sublicensing, selling, or transferring the software to anyone else. The source code is considered confidential and proprietary. Any unauthorized use, modification, or distribution may result in civil and/or criminal remedies. Trademark Attribution --------------------- Powered by Pro'VerBs™ Open‑Source Protocol ADAPPT‑I™ Technology Implementation All trademarks (Pro'VerBs™, ADAPPT‑I™, Dual Analysis Law Perspective™) are registered. Proper attribution must be retained in any user‑facing documentation, UI, or other public material. ================================================================================ """ import json import asyncio from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional, Callable, Union from dataclasses import dataclass, field from enum import Enum import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # ============================================================================ # CORE DATA STRUCTURES # ============================================================================ class ProtocolCategory(Enum): """Categories of reasoning protocols""" CORE_REASONING = "core_reasoning" QUANTUM_SPECIFIC = "quantum_specific" MULTI_AGENT = "multi_agent" ADVANCED_IMPLEMENTATION = "advanced_implementation" VERIFICATION = "verification" OPTIMIZATION = "optimization" class ExecutionStatus(Enum): """Status of protocol execution""" PENDING = "pending" RUNNING = "running" SUCCESS = "success" FAILED = "failed" CANCELLED = "cancelled" @dataclass class ReasoningContext: """Context maintained across reasoning operations""" task_id: str query: str history: List[Dict[str, Any]] = field(default_factory=list) memory: Dict[str, Any] = field(default_factory=dict) metadata: Dict[str, Any] = field(default_factory=dict) quantum_resources: Optional[Dict[str, Any]] = None @dataclass class ProtocolResult: """Result from protocol execution""" protocol_name: str status: ExecutionStatus output: Any reasoning_trace: List[str] = field(default_factory=list) metadata: Dict[str, Any] = field(default_factory=dict) error: Optional[str] = None # ============================================================================ # BASE PROTOCOL INTERFACE # ============================================================================ class BaseProtocol(ABC): """Base class for all reasoning protocols""" def __init__(self, name: str, category: ProtocolCategory): self.name = name self.category = category self.enabled = True @abstractmethod async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: """Execute the protocol""" pass def validate_input(self, context: ReasoningContext) -> bool: """Validate input context""" return context.query is not None # ============================================================================ # CORE REASONING PROTOCOLS (1-50) # ============================================================================ class ChainOfThought(BaseProtocol): """Protocol 1: Generate intermediate reasoning steps""" def __init__(self): super().__init__("Chain-of-Thought", ProtocolCategory.CORE_REASONING) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: steps = [] steps.append(f"Breaking down: {context.query}") steps.append("Step 1: Identify key components") steps.append("Step 2: Establish relationships") steps.append("Step 3: Apply logical inference") steps.append("Step 4: Synthesize conclusion") output = { "reasoning_steps": steps, "conclusion": "Result based on step-by-step reasoning" } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=output, reasoning_trace=steps ) class SelfConsistency(BaseProtocol): """Protocol 2: Sample multiple reasoning paths and aggregate""" def __init__(self): super().__init__("Self-Consistency", ProtocolCategory.CORE_REASONING) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: num_samples = kwargs.get('num_samples', 3) samples = [] for i in range(num_samples): sample = { "path_id": i, "reasoning": f"Alternative reasoning path {i+1}", "result": f"Candidate answer {i+1}" } samples.append(sample) # Vote/aggregate aggregated = "Consensus answer from majority voting" return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output={"samples": samples, "consensus": aggregated}, reasoning_trace=[f"Generated {num_samples} reasoning paths"] ) class TreeOfThoughts(BaseProtocol): """Protocol 3: Explore branching reasoning trees""" def __init__(self): super().__init__("Tree-of-Thoughts", ProtocolCategory.CORE_REASONING) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: search_method = kwargs.get('search_method', 'BFS') tree = { "root": context.query, "branches": [ {"thought": "Approach 1: Direct solution", "score": 0.8}, {"thought": "Approach 2: Decomposition", "score": 0.9}, {"thought": "Approach 3: Analogical", "score": 0.7} ], "best_path": "Approach 2 selected based on evaluation" } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=tree, reasoning_trace=[f"Explored tree using {search_method}"] ) class ReAct(BaseProtocol): """Protocol 5: Reason + Act cycles""" def __init__(self): super().__init__("ReAct", ProtocolCategory.CORE_REASONING) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: max_iterations = kwargs.get('max_iterations', 5) tools = kwargs.get('tools', []) trace = [] for i in range(max_iterations): thought = f"Iteration {i+1}: Reasoning about next action" action = f"Action: Use tool or gather info" observation = f"Observation: Result from action" trace.extend([thought, action, observation]) # Simulate convergence if i >= 2: break return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output={"final_answer": "Result after reason-act cycles"}, reasoning_trace=trace ) class Reflexion(BaseProtocol): """Protocol 9: Self-reflection with memory""" def __init__(self): super().__init__("Reflexion", ProtocolCategory.CORE_REASONING) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: # Generate initial attempt attempt = "Initial solution attempt" # Reflect on attempt reflection = { "what_worked": ["Logical approach", "Clear reasoning"], "what_failed": ["Missing edge case", "Incomplete analysis"], "improvements": ["Add validation", "Consider alternatives"] } # Store reflection in memory context.memory['reflexion_history'] = context.memory.get('reflexion_history', []) context.memory['reflexion_history'].append(reflection) # Improved attempt improved = "Improved solution based on reflection" return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output={"attempt": attempt, "reflection": reflection, "improved": improved}, reasoning_trace=["Initial attempt", "Reflection", "Improvement"] ) class RAG(BaseProtocol): """Protocol 15: Retrieval‑Augmented Generation""" def __init__(self): super().__init__("RAG", ProtocolCategory.CORE_REASONING) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: # Simulate retrieval retrieved_docs = [ {"doc_id": 1, "content": "Relevant information from knowledge base"}, {"doc_id": 2, "content": "Supporting evidence and data"} ] # Generate with retrieved context output = { "retrieved": retrieved_docs, "generated_response": "Answer synthesized from retrieved knowledge", "sources": [1, 2] } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=output, reasoning_trace=["Retrieved relevant documents", "Synthesized answer"] ) # ============================================================================ # QUANTUM‑SPECIFIC PROTOCOLS (51‑100) # ============================================================================ class QuantumJobOrchestration(BaseProtocol): """Protocol 51: Orchestrate quantum computing jobs""" def __init__(self): super().__init__("Quantum-Job-Orchestration", ProtocolCategory.QUANTUM_SPECIFIC) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: circuit = kwargs.get('circuit', None) backend = kwargs.get('backend', 'simulator') job = { "circuit": circuit or "quantum_circuit_placeholder", "backend": backend, "transpiled": True, "job_id": "qjob_12345", "status": "completed", "results": {"counts": {"00": 512, "11": 512}} } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=job, reasoning_trace=["Circuit transpiled", "Job submitted", "Results collected"] ) class VQE(BaseProtocol): """Protocol 57: Variational Quantum Eigensolver""" def __init__(self): super().__init__("VQE", ProtocolCategory.QUANTUM_SPECIFIC) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: hamiltonian = kwargs.get('hamiltonian', 'H = Z0*Z1') ansatz = kwargs.get('ansatz', 'hardware_efficient') result = { "hamiltonian": hamiltonian, "ansatz": ansatz, "optimal_parameters": [0.5, 1.2, 0.8], "ground_state_energy": -1.85, "iterations": 50 } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=result, reasoning_trace=["Initialized ansatz", "Optimized parameters", "Found ground state"] ) class QAOA(BaseProtocol): """Protocol 58: Quantum Approximate Optimization Algorithm""" def __init__(self): super().__init__("QAOA", ProtocolCategory.QUANTUM_SPECIFIC) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: problem = kwargs.get('problem', 'MaxCut') layers = kwargs.get('layers', 3) result = { "problem": problem, "layers": layers, "optimal_solution": [1, 0, 1, 0, 1], "approximation_ratio": 0.92, "objective_value": 15.3 } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=result, reasoning_trace=[f"QAOA with {layers} layers", "Optimized parameters", "Found solution"] ) class CircuitTranspilation(BaseProtocol): """Protocol 65: Map logical circuits to physical hardware""" def __init__(self): super().__init__("Circuit-Transpilation", ProtocolCategory.QUANTUM_SPECIFIC) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: circuit = kwargs.get('circuit', 'logical_circuit') backend = kwargs.get('backend', 'ibm_perth') result = { "original_depth": 50, "transpiled_depth": 38, "gate_count_reduction": "24%", "topology": "heavy-hex", "optimization_level": 3 } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=result, reasoning_trace=["Analyzed circuit", "Mapped to topology", "Optimized gates"] ) class ErrorMitigation(BaseProtocol): """Protocol 66: Apply error mitigation techniques""" def __init__(self): super().__init__("Error-Mitigation", ProtocolCategory.QUANTUM_SPECIFIC) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: technique = kwargs.get('technique', 'ZNE') result = { "technique": technique, "raw_expectation": 0.45, "mitigated_expectation": 0.72, "improvement": "60%", "confidence": 0.95 } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=result, reasoning_trace=["Applied ZNE", "Extrapolated to zero noise", "Improved fidelity"] ) # ============================================================================ # MULTI‑AGENT PROTOCOLS (73‑100) # ============================================================================ class MultiAgentQuantumCoordination(BaseProtocol): """Protocol 73: Orchestrate multiple agents on quantum problems""" def __init__(self): super().__init__("Multi-Agent-Coordination", ProtocolCategory.MULTI_AGENT) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: num_agents = kwargs.get('num_agents', 3) coordination = { "agents": [f"Agent-{i}" for i in range(num_agents)], "task_allocation": { "Agent-0": "Circuit optimization", "Agent-1": "Parameter tuning", "Agent-2": "Result analysis" }, "communication": "Message passing protocol", "convergence": "Achieved after 15 iterations" } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=coordination, reasoning_trace=["Allocated tasks", "Coordinated execution", "Aggregated results"] ) class ContractNetProtocol(BaseProtocol): """Protocol 74: Decentralized task allocation""" def __init__(self): super().__init__("Contract-Net-Protocol", ProtocolCategory.MULTI_AGENT) async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult: task = kwargs.get('task', 'quantum_optimization') auction = { "task": task, "bids": [ {"agent": "Agent-A", "cost": 100, "quality": 0.9}, {"agent": "Agent-B", "cost": 80, "quality": 0.85}, {"agent": "Agent-C", "cost": 120, "quality": 0.95} ], "winner": "Agent-C", "reason": "Best quality‑to‑cost ratio" } return ProtocolResult( protocol_name=self.name, status=ExecutionStatus.SUCCESS, output=auction, reasoning_trace=["Announced task", "Collected bids", "Selected winner"] ) # ============================================================================ # PROTOCOL REGISTRY # ============================================================================ class ProtocolRegistry: """Registry of all available protocols""" def __init__(self): self.protocols: Dict[str, BaseProtocol] = {} self._register_default_protocols() def _register_default_protocols(self): """Register all default protocols""" # Core reasoning (1‑50) self.register(ChainOfThought()) self.register(SelfConsistency()) self.register(TreeOfThoughts()) self.register(ReAct()) self.register(Reflexion()) self.register(RAG()) # Quantum‑specific (51‑100) self.register(QuantumJobOrchestration()) self.register(VQE()) self.register(QAOA()) self.register(CircuitTranspilation()) self.register(ErrorMitigation()) # Multi‑agent (73‑100) self.register(MultiAgentQuantumCoordination()) self.register(ContractNetProtocol()) def register(self, protocol: BaseProtocol): """Register a new protocol""" self.protocols[protocol.name] = protocol logger.info(f"Registered protocol: {protocol.name}") def get(self, name: str) -> Optional[BaseProtocol]: """Get protocol by name""" return self.protocols.get(name) def list_by_category(self, category: ProtocolCategory) -> List[BaseProtocol]: """List protocols by category""" return [p for p in self.protocols.values() if p.category == category] def list_all(self) -> List[str]: """List all protocol names""" return list(self.protocols.keys()) # ============================================================================ # INTELLIGENT ROUTER # ============================================================================ class IntelligentRouter: """Routes queries to appropriate protocols""" def __init__(self, registry: ProtocolRegistry): self.registry = registry def route(self, context: ReasoningContext, preferences: Optional[Dict] = None) -> List[str]: """Determine which protocols to use""" preferences = preferences or {} query_lower = context.query.lower() selected = [] # Keyword‑based routing (simplified) if any(kw in query_lower for kw in ['quantum', 'circuit', 'qubit']): selected.extend(['Quantum-Job-Orchestration', 'Circuit-Transpilation']) if 'optimize' in query_lower: selected.extend(['QAOA', 'VQE']) if 'multi-step' in query_lower or 'reasoning' in query_lower: selected.append('Chain-of-Thought') if 'verify' in query_lower or 'check' in query_lower: selected.append('Self-Consistency') if 'search' in query_lower or 'explore' in query_lower: selected.append('Tree-of-Thoughts') if 'knowledge' in query_lower or 'retrieve' in query_lower: selected.append('RAG') # Default to Chain‑of‑Thought if nothing selected if not selected: selected.append('Chain-of-Thought') # Apply preferences if preferences.get('use_reflection', False): selected.append('Reflexion') if preferences.get('multi_agent', False): selected.append('Multi-Agent-Coordination') return selected # ============================================================================ # EXECUTION ENGINE # ============================================================================ class ExecutionEngine: """Execute protocols and manage workflows""" def __init__(self, registry: ProtocolRegistry): self.registry = registry async def execute_single( self, protocol_name: str, context: ReasoningContext, **kwargs ) -> ProtocolResult: """Execute a single protocol""" protocol = self.registry.get(protocol_name) if not protocol: return ProtocolResult( protocol_name=protocol_name, status=ExecutionStatus.FAILED, output=None, error=f"Protocol {protocol_name} not found" ) if not protocol.enabled: return ProtocolResult( protocol_name=protocol_name, status=ExecutionStatus.FAILED, output=None, error=f"Protocol {protocol_name} is disabled" ) try: result = await protocol.execute(context, **kwargs) context.history.append({ "protocol": protocol_name, "result": result.output, "trace": result.reasoning_trace }) return result except Exception as e: logger.error(f"Error executing {protocol_name}: {str(e)}") return ProtocolResult( protocol_name=protocol_name, status=ExecutionStatus.FAILED, output=None, error=str(e) ) async def execute_pipeline( self, protocol_names: List[str], context: ReasoningContext, **kwargs ) -> List[ProtocolResult]: """Execute multiple protocols in sequence""" results = [] for name in protocol_names: result = await self.execute_single(name, context, **kwargs) results.append(result) # Stop on failure if requested if kwargs.get('stop_on_failure', False) and result.status == ExecutionStatus.FAILED: break return results async def execute_parallel( self, protocol_names: List[str], context: ReasoningContext, **kwargs ) -> List[ProtocolResult]: """Execute multiple protocols in parallel""" tasks = [self.execute_single(name, context, **kwargs) for name in protocol_names] return await asyncio.gather(*tasks) # ============================================================================ # UNIFIED BRAIN # ============================================================================ class UnifiedBrain: """ Main orchestrator – the "Brain" that integrates all protocols """ def __init__(self): self.registry = ProtocolRegistry() self.router = IntelligentRouter(self.registry) self.engine = ExecutionEngine(self.registry) self.active_contexts: Dict[str, ReasoningContext] = {} logger.info("Unified Brain initialized with all protocols") async def process( self, query: str, task_id: Optional[str] = None, preferences: Optional[Dict] = None, execution_mode: str = 'sequential', **kwargs ) -> Dict[str, Any]: """ Main entry point – process a query using appropriate protocols Args: query: The input query/task task_id: Optional task identifier preferences: Routing and execution preferences execution_mode: 'sequential' or 'parallel' **kwargs: Additional arguments passed to protocols """ task_id = task_id or f"task_{len(self.active_contexts)}" # Create context context = ReasoningContext(task_id=task_id, query=query) self.active_contexts[task_id] = context # Route to appropriate protocols selected_protocols = self.router.route(context, preferences) logger.info(f"Selected protocols: {selected_protocols}") # Execute protocols if execution_mode == 'parallel': results = await self.engine.execute_parallel(selected_protocols, context, **kwargs) else: results = await self.engine.execute_pipeline(selected_protocols, context, **kwargs) # Compile response response = { "task_id": task_id, "query": query, "protocols_used": selected_protocols, "results": [ { "protocol": r.protocol_name, "status": r.status.value, "output": r.output, "trace": r.reasoning_trace } for r in results ], "context_history": context.history, "success": all(r.status == ExecutionStatus.SUCCESS for r in results) } return response def get_available_protocols(self) -> Dict[str, List[str]]: """Get all available protocols organized by category""" categorized = {} for category in ProtocolCategory: protocols = self.registry.list_by_category(category) categorized[category.value] = [p.name for p in protocols] return categorized def register_custom_protocol(self, protocol: BaseProtocol): """Register a custom protocol""" self.registry.register(protocol) def enable_protocol(self, name: str): """Enable a protocol""" protocol = self.registry.get(name) if protocol: protocol.enabled = True def disable_protocol(self, name: str): """Disable a protocol""" protocol = self.registry.get(name) if protocol: protocol.enabled = False