Spaces:
Runtime error
Runtime error
Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
from torch import Tensor, nn
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
from layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
| 9 |
+
MLPEmbedder, SingleStreamBlock,
|
| 10 |
+
timestep_embedding)
|
| 11 |
+
|
| 12 |
+
import torch.distributed as dist
|
| 13 |
+
from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid
|
| 14 |
+
|
| 15 |
+
from accelerate.logging import get_logger
|
| 16 |
+
logger = get_logger(__name__, log_level="INFO")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@dataclass
|
| 22 |
+
class FluxParams:
|
| 23 |
+
in_channels: int
|
| 24 |
+
vec_in_dim: int
|
| 25 |
+
context_in_dim: int
|
| 26 |
+
hidden_size: int
|
| 27 |
+
mlp_ratio: float
|
| 28 |
+
num_heads: int
|
| 29 |
+
depth: int
|
| 30 |
+
depth_single_blocks: int
|
| 31 |
+
axes_dim: list[int]
|
| 32 |
+
theta: int
|
| 33 |
+
qkv_bias: bool
|
| 34 |
+
guidance_embed: bool
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class Flux(nn.Module):
|
| 38 |
+
"""
|
| 39 |
+
Transformer model for flow matching on sequences.
|
| 40 |
+
"""
|
| 41 |
+
_supports_gradient_checkpointing = True
|
| 42 |
+
|
| 43 |
+
def __init__(self, params: FluxParams):
|
| 44 |
+
super().__init__()
|
| 45 |
+
|
| 46 |
+
self.params = params
|
| 47 |
+
self.in_channels = params.in_channels
|
| 48 |
+
self.out_channels = self.in_channels
|
| 49 |
+
if params.hidden_size % params.num_heads != 0:
|
| 50 |
+
raise ValueError(
|
| 51 |
+
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
| 52 |
+
)
|
| 53 |
+
pe_dim = params.hidden_size // params.num_heads
|
| 54 |
+
if sum(params.axes_dim) != pe_dim:
|
| 55 |
+
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
| 56 |
+
self.hidden_size = params.hidden_size
|
| 57 |
+
self.num_heads = params.num_heads
|
| 58 |
+
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
| 59 |
+
|
| 60 |
+
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
| 61 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
| 62 |
+
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
| 63 |
+
self.guidance_in = (
|
| 64 |
+
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
| 65 |
+
)
|
| 66 |
+
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
self.double_blocks = nn.ModuleList(
|
| 70 |
+
[
|
| 71 |
+
DoubleStreamBlock(
|
| 72 |
+
self.hidden_size,
|
| 73 |
+
self.num_heads,
|
| 74 |
+
mlp_ratio=params.mlp_ratio,
|
| 75 |
+
qkv_bias=params.qkv_bias
|
| 76 |
+
)
|
| 77 |
+
for i in range(1, params.depth+1)
|
| 78 |
+
]
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
self.single_blocks = nn.ModuleList(
|
| 82 |
+
[
|
| 83 |
+
SingleStreamBlock(
|
| 84 |
+
self.hidden_size,
|
| 85 |
+
self.num_heads,
|
| 86 |
+
mlp_ratio=params.mlp_ratio
|
| 87 |
+
)
|
| 88 |
+
for i in range(1, params.depth_single_blocks+1)
|
| 89 |
+
]
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
| 93 |
+
self.gradient_checkpointing = True
|
| 94 |
+
|
| 95 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 96 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 97 |
+
module.gradient_checkpointing = value
|
| 98 |
+
|
| 99 |
+
@property
|
| 100 |
+
def attn_processors(self):
|
| 101 |
+
# set recursively
|
| 102 |
+
processors = {}
|
| 103 |
+
|
| 104 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors):
|
| 105 |
+
if hasattr(module, "set_processor"):
|
| 106 |
+
processors[f"{name}.processor"] = module.processor
|
| 107 |
+
|
| 108 |
+
for sub_name, child in module.named_children():
|
| 109 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 110 |
+
|
| 111 |
+
return processors
|
| 112 |
+
|
| 113 |
+
for name, module in self.named_children():
|
| 114 |
+
fn_recursive_add_processors(name, module, processors)
|
| 115 |
+
|
| 116 |
+
return processors
|
| 117 |
+
|
| 118 |
+
def set_attn_processor(self, processor):
|
| 119 |
+
r"""
|
| 120 |
+
Sets the attention processor to use to compute attention.
|
| 121 |
+
|
| 122 |
+
Parameters:
|
| 123 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 124 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 125 |
+
for **all** `Attention` layers.
|
| 126 |
+
|
| 127 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 128 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 129 |
+
|
| 130 |
+
"""
|
| 131 |
+
count = len(self.attn_processors.keys())
|
| 132 |
+
|
| 133 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 134 |
+
raise ValueError(
|
| 135 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 136 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 140 |
+
if hasattr(module, "set_processor"):
|
| 141 |
+
if not isinstance(processor, dict):
|
| 142 |
+
module.set_processor(processor)
|
| 143 |
+
else:
|
| 144 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 145 |
+
|
| 146 |
+
for sub_name, child in module.named_children():
|
| 147 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 148 |
+
|
| 149 |
+
for name, module in self.named_children():
|
| 150 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 151 |
+
|
| 152 |
+
def forward(
|
| 153 |
+
self,
|
| 154 |
+
img: Tensor,
|
| 155 |
+
img_ids: Tensor,
|
| 156 |
+
txt: Tensor,
|
| 157 |
+
txt_ids: Tensor,
|
| 158 |
+
timesteps: Tensor,
|
| 159 |
+
y: Tensor,
|
| 160 |
+
block_controlnet_hidden_states=None,
|
| 161 |
+
guidance: Tensor = None,
|
| 162 |
+
image_proj: Tensor = None,
|
| 163 |
+
ip_scale: Tensor = 1.0,
|
| 164 |
+
return_intermediate: bool = False,
|
| 165 |
+
):
|
| 166 |
+
|
| 167 |
+
if return_intermediate:
|
| 168 |
+
intermediate_double = []
|
| 169 |
+
intermediate_single = []
|
| 170 |
+
|
| 171 |
+
# running on sequences img
|
| 172 |
+
img = self.img_in(img)
|
| 173 |
+
vec = self.time_in(timestep_embedding(timesteps, 256))
|
| 174 |
+
if self.params.guidance_embed:
|
| 175 |
+
if guidance is None:
|
| 176 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
| 177 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
| 178 |
+
vec = vec + self.vector_in(y)
|
| 179 |
+
txt = self.txt_in(txt)
|
| 180 |
+
|
| 181 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
| 182 |
+
pe = self.pe_embedder(ids)
|
| 183 |
+
|
| 184 |
+
if block_controlnet_hidden_states is not None:
|
| 185 |
+
controlnet_depth = len(block_controlnet_hidden_states)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
for index_block, block in enumerate(self.double_blocks):
|
| 189 |
+
|
| 190 |
+
if self.training and self.gradient_checkpointing:
|
| 191 |
+
|
| 192 |
+
def create_custom_forward(module, return_dict=None):
|
| 193 |
+
def custom_forward(*inputs):
|
| 194 |
+
if return_dict is not None:
|
| 195 |
+
return module(*inputs, return_dict=return_dict)
|
| 196 |
+
else:
|
| 197 |
+
return module(*inputs)
|
| 198 |
+
|
| 199 |
+
return custom_forward
|
| 200 |
+
|
| 201 |
+
img, txt = torch.utils.checkpoint.checkpoint(
|
| 202 |
+
create_custom_forward(block),
|
| 203 |
+
img,
|
| 204 |
+
txt,
|
| 205 |
+
vec,
|
| 206 |
+
pe,
|
| 207 |
+
image_proj,
|
| 208 |
+
ip_scale,
|
| 209 |
+
use_reentrant=False
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
else:
|
| 213 |
+
img, txt = block(
|
| 214 |
+
img=img,
|
| 215 |
+
txt=txt,
|
| 216 |
+
vec=vec,
|
| 217 |
+
pe=pe,
|
| 218 |
+
image_proj=image_proj,
|
| 219 |
+
ip_scale=ip_scale
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
if return_intermediate:
|
| 224 |
+
intermediate_double.append(
|
| 225 |
+
[img, txt]
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
if block_controlnet_hidden_states is not None:
|
| 229 |
+
img = img + block_controlnet_hidden_states[index_block % 2]
|
| 230 |
+
|
| 231 |
+
img = torch.cat((txt, img), dim=1)
|
| 232 |
+
txt_dim = txt.shape[1]
|
| 233 |
+
for index_block, block in enumerate(self.single_blocks):
|
| 234 |
+
|
| 235 |
+
if self.training and self.gradient_checkpointing:
|
| 236 |
+
|
| 237 |
+
def create_custom_forward(module, return_dict=None):
|
| 238 |
+
def custom_forward(*inputs):
|
| 239 |
+
if return_dict is not None:
|
| 240 |
+
return module(*inputs, return_dict=return_dict)
|
| 241 |
+
else:
|
| 242 |
+
return module(*inputs)
|
| 243 |
+
|
| 244 |
+
return custom_forward
|
| 245 |
+
|
| 246 |
+
# ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 247 |
+
img = torch.utils.checkpoint.checkpoint(
|
| 248 |
+
create_custom_forward(block),
|
| 249 |
+
img,
|
| 250 |
+
vec,
|
| 251 |
+
pe,
|
| 252 |
+
use_reentrant=False
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
else:
|
| 256 |
+
img = block(img, vec=vec, pe=pe)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
# if return_intermediate:
|
| 260 |
+
img_ = img[:, txt.shape[1]:, ...]
|
| 261 |
+
txt_ = img[:, :txt.shape[1], ...]
|
| 262 |
+
|
| 263 |
+
if return_intermediate:
|
| 264 |
+
intermediate_single.append(
|
| 265 |
+
[img_, txt_]
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
img = torch.cat([txt_, img_], dim=1)
|
| 269 |
+
|
| 270 |
+
img = img[:, txt.shape[1] :, ...]
|
| 271 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
| 272 |
+
if return_intermediate:
|
| 273 |
+
return img, intermediate_double, intermediate_single
|
| 274 |
+
else:
|
| 275 |
+
return img
|