File size: 6,714 Bytes
bc36801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
/**
* Encoder Worker - Runs preprocessor + encoder in a separate thread
*/
importScripts('https://cdn.jsdelivr.net/npm/[email protected]/dist/ort.min.js');
// Configure ONNX Runtime to find WASM files from CDN
ort.env.wasm.wasmPaths = 'https://cdn.jsdelivr.net/npm/[email protected]/dist/';
// Model config
let cfg = null;
let preprocessor = null;
let encoder = null;
let tailLatency = 0;
// Preprocessor state
let prepSession = null;
let prepDim = 0;
let prepC1 = 0;
let prepStateC1 = null;
let prepStateC2 = null;
// Encoder state
let encSession = null;
let encDim = 0;
let encNPast = 0;
let encNFuture = 0;
let encEncoderDepth = 0;
let encContextSize = 0;
let encInputBuffer = [];
let encTotalInputFrames = 0;
let encTotalOutputFrames = 0;
function resetPreprocessor() {
if (prepStateC1) prepStateC1.fill(0);
if (prepStateC2) prepStateC2.fill(0);
}
function resetEncoder() {
encInputBuffer = [];
encTotalInputFrames = 0;
encTotalOutputFrames = 0;
}
async function processPreprocessor(audioChunk) {
const feeds = {
'audio_chunk': new ort.Tensor('float32', audioChunk, [1, audioChunk.length]),
'state_c1': new ort.Tensor('float32', prepStateC1, [1, 4, prepDim]),
'state_c2': new ort.Tensor('float32', prepStateC2, [1, 4, prepC1])
};
const results = await prepSession.run(feeds);
// Update states
prepStateC1.set(results.new_state_c1.data);
prepStateC2.set(results.new_state_c2.data);
return {
data: results.features.data,
dims: results.features.dims
};
}
async function processEncoder(melData, melDims, flush = true) {
const newFrames = melDims[1];
// Append new frames to buffer
for (let f = 0; f < newFrames; f++) {
const frame = new Float32Array(encDim);
for (let d = 0; d < encDim; d++) {
frame[d] = melData[f * encDim + d];
}
encInputBuffer.push(frame);
}
encTotalInputFrames += newFrames;
// Calculate output range
const canOutput = flush
? encTotalInputFrames
: Math.max(0, encTotalInputFrames - tailLatency);
const outputFrom = flush
? Math.max(0, encTotalOutputFrames - tailLatency)
: encTotalOutputFrames;
const newOutputCount = canOutput - outputFrom;
if (newOutputCount <= 0) {
return { data: new Float32Array(0), dims: [1, 0, encDim] };
}
// Prepare input buffer tensor
const bufferFrames = encInputBuffer.length;
const bufferData = new Float32Array(bufferFrames * encDim);
for (let f = 0; f < bufferFrames; f++) {
bufferData.set(encInputBuffer[f], f * encDim);
}
const feeds = {
'input': new ort.Tensor('float32', bufferData, [1, bufferFrames, encDim])
};
const results = await encSession.run(feeds);
const fullOutput = results.output;
// Calculate which frames to return
const bufStartFrame = encTotalInputFrames - bufferFrames;
const outputStart = outputFrom - bufStartFrame;
// Extract the subset of output
const resultData = new Float32Array(newOutputCount * encDim);
for (let f = 0; f < newOutputCount; f++) {
for (let d = 0; d < encDim; d++) {
resultData[f * encDim + d] = fullOutput.data[(outputStart + f) * encDim + d];
}
}
// Trim input buffer to context size
if (encInputBuffer.length > encContextSize) {
encInputBuffer = encInputBuffer.slice(-encContextSize);
}
encTotalOutputFrames = canOutput;
return { data: resultData, dims: [1, newOutputCount, encDim] };
}
self.onmessage = async function(e) {
const { type, data } = e.data;
switch (type) {
case 'init': {
try {
cfg = data.cfg;
const onnxUrl = data.onnxUrl;
const modelName = data.modelName;
const dtype = 'fp32';
tailLatency = cfg.n_future * cfg.encoder_depth;
// Initialize preprocessor
self.postMessage({ type: 'status', message: 'Loading preprocessor...' });
prepSession = await ort.InferenceSession.create(
`${onnxUrl}/preprocessor_streaming_${modelName}_${dtype}.onnx`
);
prepDim = cfg.dim;
prepC1 = 2 * cfg.dim;
prepStateC1 = new Float32Array(4 * cfg.dim);
prepStateC2 = new Float32Array(4 * prepC1);
// Initialize encoder
self.postMessage({ type: 'status', message: 'Loading encoder...' });
encSession = await ort.InferenceSession.create(
`${onnxUrl}/encoder_${modelName}_${dtype}.onnx`
);
encDim = cfg.dim;
encNPast = cfg.n_past;
encNFuture = cfg.n_future;
encEncoderDepth = cfg.encoder_depth;
encContextSize = cfg.encoder_depth * (cfg.n_past + cfg.n_future);
self.postMessage({ type: 'ready' });
} catch (err) {
self.postMessage({ type: 'error', message: err.message });
}
break;
}
case 'segment_start': {
resetPreprocessor();
resetEncoder();
self.postMessage({
type: 'segment_start',
segmentId: data.segmentId
});
break;
}
case 'segment_end': {
self.postMessage({
type: 'segment_end',
segmentId: data.segmentId
});
break;
}
case 'audio': {
try {
// Process through preprocessor
const mel = await processPreprocessor(new Float32Array(data.audio));
const audioMs = (data.audio.length / 16000 * 1000).toFixed(0);
console.log(`Audio ${data.audio.length} samples (${audioMs}ms) β Mel ${mel.dims[1]} frames`);
// Process through encoder with flush=true
const enc = await processEncoder(mel.data, mel.dims, true);
console.log(`Mel ${mel.dims[1]} frames β Encoder ${enc.dims[1]} frames (accumulated: ${encTotalOutputFrames})`);
if (enc.dims[1] > 0) {
self.postMessage({
type: 'features',
segmentId: data.segmentId,
features: enc.data,
dims: enc.dims
}, [enc.data.buffer]); // Transfer ownership
}
} catch (err) {
console.error('Encoder error:', err);
}
break;
}
}
};
|