File size: 6,714 Bytes
bc36801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/**
 * Encoder Worker - Runs preprocessor + encoder in a separate thread
 */

importScripts('https://cdn.jsdelivr.net/npm/[email protected]/dist/ort.min.js');

// Configure ONNX Runtime to find WASM files from CDN
ort.env.wasm.wasmPaths = 'https://cdn.jsdelivr.net/npm/[email protected]/dist/';

// Model config
let cfg = null;
let preprocessor = null;
let encoder = null;
let tailLatency = 0;

// Preprocessor state
let prepSession = null;
let prepDim = 0;
let prepC1 = 0;
let prepStateC1 = null;
let prepStateC2 = null;

// Encoder state
let encSession = null;
let encDim = 0;
let encNPast = 0;
let encNFuture = 0;
let encEncoderDepth = 0;
let encContextSize = 0;
let encInputBuffer = [];
let encTotalInputFrames = 0;
let encTotalOutputFrames = 0;

function resetPreprocessor() {
    if (prepStateC1) prepStateC1.fill(0);
    if (prepStateC2) prepStateC2.fill(0);
}

function resetEncoder() {
    encInputBuffer = [];
    encTotalInputFrames = 0;
    encTotalOutputFrames = 0;
}

async function processPreprocessor(audioChunk) {
    const feeds = {
        'audio_chunk': new ort.Tensor('float32', audioChunk, [1, audioChunk.length]),
        'state_c1': new ort.Tensor('float32', prepStateC1, [1, 4, prepDim]),
        'state_c2': new ort.Tensor('float32', prepStateC2, [1, 4, prepC1])
    };

    const results = await prepSession.run(feeds);

    // Update states
    prepStateC1.set(results.new_state_c1.data);
    prepStateC2.set(results.new_state_c2.data);

    return {
        data: results.features.data,
        dims: results.features.dims
    };
}

async function processEncoder(melData, melDims, flush = true) {
    const newFrames = melDims[1];

    // Append new frames to buffer
    for (let f = 0; f < newFrames; f++) {
        const frame = new Float32Array(encDim);
        for (let d = 0; d < encDim; d++) {
            frame[d] = melData[f * encDim + d];
        }
        encInputBuffer.push(frame);
    }

    encTotalInputFrames += newFrames;

    // Calculate output range
    const canOutput = flush
        ? encTotalInputFrames
        : Math.max(0, encTotalInputFrames - tailLatency);

    const outputFrom = flush
        ? Math.max(0, encTotalOutputFrames - tailLatency)
        : encTotalOutputFrames;

    const newOutputCount = canOutput - outputFrom;

    if (newOutputCount <= 0) {
        return { data: new Float32Array(0), dims: [1, 0, encDim] };
    }

    // Prepare input buffer tensor
    const bufferFrames = encInputBuffer.length;
    const bufferData = new Float32Array(bufferFrames * encDim);
    for (let f = 0; f < bufferFrames; f++) {
        bufferData.set(encInputBuffer[f], f * encDim);
    }

    const feeds = {
        'input': new ort.Tensor('float32', bufferData, [1, bufferFrames, encDim])
    };

    const results = await encSession.run(feeds);
    const fullOutput = results.output;

    // Calculate which frames to return
    const bufStartFrame = encTotalInputFrames - bufferFrames;
    const outputStart = outputFrom - bufStartFrame;

    // Extract the subset of output
    const resultData = new Float32Array(newOutputCount * encDim);
    for (let f = 0; f < newOutputCount; f++) {
        for (let d = 0; d < encDim; d++) {
            resultData[f * encDim + d] = fullOutput.data[(outputStart + f) * encDim + d];
        }
    }

    // Trim input buffer to context size
    if (encInputBuffer.length > encContextSize) {
        encInputBuffer = encInputBuffer.slice(-encContextSize);
    }

    encTotalOutputFrames = canOutput;
    return { data: resultData, dims: [1, newOutputCount, encDim] };
}

self.onmessage = async function(e) {
    const { type, data } = e.data;

    switch (type) {
        case 'init': {
            try {
                cfg = data.cfg;
                const onnxUrl = data.onnxUrl;
                const modelName = data.modelName;
                const dtype = 'fp32';

                tailLatency = cfg.n_future * cfg.encoder_depth;

                // Initialize preprocessor
                self.postMessage({ type: 'status', message: 'Loading preprocessor...' });
                prepSession = await ort.InferenceSession.create(
                    `${onnxUrl}/preprocessor_streaming_${modelName}_${dtype}.onnx`
                );
                prepDim = cfg.dim;
                prepC1 = 2 * cfg.dim;
                prepStateC1 = new Float32Array(4 * cfg.dim);
                prepStateC2 = new Float32Array(4 * prepC1);

                // Initialize encoder
                self.postMessage({ type: 'status', message: 'Loading encoder...' });
                encSession = await ort.InferenceSession.create(
                    `${onnxUrl}/encoder_${modelName}_${dtype}.onnx`
                );
                encDim = cfg.dim;
                encNPast = cfg.n_past;
                encNFuture = cfg.n_future;
                encEncoderDepth = cfg.encoder_depth;
                encContextSize = cfg.encoder_depth * (cfg.n_past + cfg.n_future);

                self.postMessage({ type: 'ready' });
            } catch (err) {
                self.postMessage({ type: 'error', message: err.message });
            }
            break;
        }

        case 'segment_start': {
            resetPreprocessor();
            resetEncoder();
            self.postMessage({
                type: 'segment_start',
                segmentId: data.segmentId
            });
            break;
        }

        case 'segment_end': {
            self.postMessage({
                type: 'segment_end',
                segmentId: data.segmentId
            });
            break;
        }

        case 'audio': {
            try {
                // Process through preprocessor
                const mel = await processPreprocessor(new Float32Array(data.audio));

                const audioMs = (data.audio.length / 16000 * 1000).toFixed(0);
                console.log(`Audio ${data.audio.length} samples (${audioMs}ms) β†’ Mel ${mel.dims[1]} frames`);

                // Process through encoder with flush=true
                const enc = await processEncoder(mel.data, mel.dims, true);

                console.log(`Mel ${mel.dims[1]} frames β†’ Encoder ${enc.dims[1]} frames (accumulated: ${encTotalOutputFrames})`);

                if (enc.dims[1] > 0) {
                    self.postMessage({
                        type: 'features',
                        segmentId: data.segmentId,
                        features: enc.data,
                        dims: enc.dims
                    }, [enc.data.buffer]);  // Transfer ownership
                }
            } catch (err) {
                console.error('Encoder error:', err);
            }
            break;
        }
    }
};