import streamlit as st import easyocr import asyncio import re from transformers import pipeline asyncio.set_event_loop(asyncio.new_event_loop()) # Load OCR model reader = easyocr.Reader(['lt']) # Load summarization model summarizer_model_name = "LukasStankevicius/t5-base-lithuanian-news-summaries-175" try: summarizer = pipeline("summarization", model=summarizer_model_name) except Exception as e: st.error(f"Klaida su santraukos modeliu: {e}") st.stop() # Streamlit UI Setup st.title("Lietuviško teksto iš nuotraukos santraukos sukūrimas naudojant DI (naudojant lietuvišką modelį)") st.write("Įkelkite nuotrauką su tekstu:") # Upload image file uploaded_file = st.file_uploader("Įkelkite nuotrauką...", type=["png", "jpg", "jpeg"]) def preprocess_text(text): text = text.replace("-\n", "").replace("- ", "") text = re.sub(r"[^a-zA-ZąčęėįšųūžĄČĘĖĮŠŲŪŽ0-9\s\.,;:]", "", text) return text if uploaded_file: st.image(uploaded_file, caption="Įkelta nuotrauka", use_container_width=True) with st.spinner("Gaunamas tekstas..."): extracted_text = reader.readtext(uploaded_file.read(), detail=0) extracted_text = " ".join(extracted_text) if extracted_text: st.subheader("Gautas tekstas:") st.write(extracted_text) # Preprocess the extracted text processed_text = preprocess_text(extracted_text) st.subheader("Sutvarkytas tekstas:") st.write(processed_text) # Generate Summary with st.spinner("Gaunama santrauka..."): try: summary_output = summarizer(processed_text, max_length=100, min_length=30, do_sample=False) summary_lithuanian = summary_output[0]['summary_text'] st.subheader("Santrauka Lietuviškai:") st.write(summary_lithuanian) except Exception as e: st.error(f"Klaida gaunant santrauką: {e}") else: st.warning("Nerasta jokio teksto, pabandykite iš naujo.")