test
Browse files
app.py
CHANGED
|
@@ -1,11 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
| 3 |
|
| 4 |
"""
|
| 5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def respond(
|
| 11 |
message,
|
|
@@ -15,33 +23,35 @@ def respond(
|
|
| 15 |
temperature,
|
| 16 |
top_p,
|
| 17 |
):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
for
|
| 21 |
-
if
|
| 22 |
-
|
| 23 |
-
if
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
stream=True,
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/
|
| 45 |
"""
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
respond,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
"""
|
| 6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 7 |
"""
|
|
|
|
| 8 |
|
| 9 |
+
# Инициализация модели и токенизатора
|
| 10 |
+
MODEL_NAME = "yandex/YandexGPT-5-Lite-8B-pretrain"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, legacy=False)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
MODEL_NAME,
|
| 14 |
+
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
| 15 |
+
torch_dtype="auto",
|
| 16 |
+
)
|
| 17 |
|
| 18 |
def respond(
|
| 19 |
message,
|
|
|
|
| 23 |
temperature,
|
| 24 |
top_p,
|
| 25 |
):
|
| 26 |
+
# Формируем контекст из истории
|
| 27 |
+
full_prompt = f"{system_message}\n\n"
|
| 28 |
+
for user_msg, assistant_msg in history:
|
| 29 |
+
if user_msg:
|
| 30 |
+
full_prompt += f"User: {user_msg}\n"
|
| 31 |
+
if assistant_msg:
|
| 32 |
+
full_prompt += f"Assistant: {assistant_msg}\n"
|
| 33 |
+
full_prompt += f"User: {message}\nAssistant:"
|
|
|
|
| 34 |
|
| 35 |
+
# Токенизация и генерация
|
| 36 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
|
| 37 |
+
outputs = model.generate(
|
| 38 |
+
**inputs,
|
| 39 |
+
max_new_tokens=max_tokens,
|
|
|
|
| 40 |
temperature=temperature,
|
| 41 |
top_p=top_p,
|
| 42 |
+
do_sample=True,
|
| 43 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 44 |
+
stream=True
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 48 |
+
# Убираем начальный промпт из ответа
|
| 49 |
+
response = response[len(full_prompt):]
|
| 50 |
+
yield response
|
| 51 |
|
| 52 |
|
| 53 |
"""
|
| 54 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docsx/chatinterface
|
| 55 |
"""
|
| 56 |
demo = gr.ChatInterface(
|
| 57 |
respond,
|