File size: 8,089 Bytes
8ada0c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import time
from datetime import datetime
from collections import defaultdict
import json
import os

class MetricsTracker:
    """

    Tracks system performance metrics across queries.

    """
    
    def __init__(self, save_path="metrics_data.json"):
        self.save_path = save_path
        self.metrics = {
            "total_queries": 0,
            "rag_success": 0,
            "web_search_fallback": 0,
            "trusted_search_used": 0,
            "general_search_used": 0,
            "complexity_distribution": {
                "simple": 0,
                "moderate": 0,
                "complex": 0
            },
            "domain_usage": {
                "medical": 0,
                "islamic": 0,
                "insurance": 0
            },
            "response_times": [],
            "worker_contributions": {
                "dense_semantic": 0,
                "bm25_keyword": 0
            },
            "validation_stats": {
                "valid": 0,
                "invalid": 0,
                "skipped": 0
            },
            "query_history": []  # Store recent queries for analysis
        }
        
        # Load existing metrics if available
        self.load_metrics()
    
    def start_query(self):
        """Start timing a query."""
        return time.time()
    
    def end_query(self, start_time):
        """Calculate and store query response time."""
        response_time = time.time() - start_time
        self.metrics["response_times"].append(response_time)
        return response_time
    
    def log_query(self, query, domain, source, complexity=None, 

                  validation=None, response_time=None, answer_preview=None):
        """

        Log a complete query with all its metadata.

        

        Args:

            query (str): User's query

            domain (str): Domain (medical, islamic, insurance)

            source (str): Where answer came from (RAG, WebSearch, etc.)

            complexity (dict): Complexity analysis result

            validation (tuple): (is_valid, reason)

            response_time (float): Time taken in seconds

            answer_preview (str): First 100 chars of answer

        """
        self.metrics["total_queries"] += 1
        
        # Track domain usage
        if domain in self.metrics["domain_usage"]:
            self.metrics["domain_usage"][domain] += 1
        
        # Track source usage
        if "RAG" in source or "Database" in source:
            self.metrics["rag_success"] += 1
        elif "Trusted" in source:
            self.metrics["trusted_search_used"] += 1
            self.metrics["web_search_fallback"] += 1
        elif "Etiqa" in source:
            self.metrics["web_search_fallback"] += 1
        elif "Web" in source or "Search" in source:
            self.metrics["general_search_used"] += 1
            self.metrics["web_search_fallback"] += 1
        
        # Track complexity distribution
        if complexity and "complexity" in complexity:
            comp_level = complexity["complexity"]
            if comp_level in self.metrics["complexity_distribution"]:
                self.metrics["complexity_distribution"][comp_level] += 1
        
        # Track validation
        if validation:
            is_valid, reason = validation
            if "skip" in reason.lower():
                self.metrics["validation_stats"]["skipped"] += 1
            elif is_valid:
                self.metrics["validation_stats"]["valid"] += 1
            else:
                self.metrics["validation_stats"]["invalid"] += 1
        
        # Store query history (last 50 queries)
        query_record = {
            "timestamp": datetime.now().isoformat(),
            "query": query[:100],  # Truncate long queries
            "domain": domain,
            "source": source,
            "complexity": complexity.get("complexity") if complexity else None,
            "k_used": complexity.get("k") if complexity else None,
            "response_time": round(response_time, 2) if response_time else None,
            "validated": is_valid if validation else None,
            "answer_preview": answer_preview[:100] if answer_preview else None
        }
        
        self.metrics["query_history"].append(query_record)
        
        # Keep only last 50 queries
        if len(self.metrics["query_history"]) > 50:
            self.metrics["query_history"] = self.metrics["query_history"][-50:]
        
        # Auto-save after each query
        self.save_metrics()
    
    def log_worker_contribution(self, worker_stats):
        """

        Log which swarm workers contributed to the final answer.

        

        Args:

            worker_stats (dict): e.g., {"dense_semantic": 5, "bm25_keyword": 3}

        """
        for worker, count in worker_stats.items():
            if worker in self.metrics["worker_contributions"]:
                self.metrics["worker_contributions"][worker] += count
    
    def get_stats(self):
        """Get current statistics."""
        total = self.metrics["total_queries"]
        
        if total == 0:
            return {
                "total_queries": 0,
                "rag_success_rate": 0,
                "web_search_rate": 0,
                "avg_response_time": 0,
                "complexity_distribution": self.metrics["complexity_distribution"],
                "domain_usage": self.metrics["domain_usage"]
            }
        
        # Calculate averages and percentages
        avg_response_time = (
            sum(self.metrics["response_times"]) / len(self.metrics["response_times"])
            if self.metrics["response_times"] else 0
        )
        
        stats = {
            "total_queries": total,
            "rag_success_rate": round((self.metrics["rag_success"] / total) * 100, 1),
            "web_search_rate": round((self.metrics["web_search_fallback"] / total) * 100, 1),
            "trusted_search_rate": round((self.metrics["trusted_search_used"] / total) * 100, 1),
            "general_search_rate": round((self.metrics["general_search_used"] / total) * 100, 1),
            "avg_response_time": round(avg_response_time, 2),
            "median_response_time": self._get_median(self.metrics["response_times"]),
            "complexity_distribution": self.metrics["complexity_distribution"],
            "domain_usage": self.metrics["domain_usage"],
            "worker_contributions": self.metrics["worker_contributions"],
            "validation_stats": self.metrics["validation_stats"],
            "recent_queries": self.metrics["query_history"][-10:]  # Last 10 queries
        }
        
        return stats
    
    def _get_median(self, values):
        """Calculate median of a list."""
        if not values:
            return 0
        sorted_values = sorted(values)
        n = len(sorted_values)
        mid = n // 2
        if n % 2 == 0:
            return round((sorted_values[mid-1] + sorted_values[mid]) / 2, 2)
        return round(sorted_values[mid], 2)
    
    def save_metrics(self):
        """Save metrics to JSON file."""
        try:
            with open(self.save_path, 'w') as f:
                json.dump(self.metrics, f, indent=2)
        except Exception as e:
            print(f"Warning: Could not save metrics: {e}")
    
    def load_metrics(self):
        """Load metrics from JSON file if it exists."""
        if os.path.exists(self.save_path):
            try:
                with open(self.save_path, 'r') as f:
                    self.metrics = json.load(f)
                print(f"✅ Loaded existing metrics from {self.save_path}")
            except Exception as e:
                print(f"Warning: Could not load metrics: {e}")
    
    def reset_metrics(self):
        """Reset all metrics (useful for testing)."""
        self.__init__(self.save_path)
        self.save_metrics()