Upload 6 files
Browse files- __init__.py +5 -0
- app_1.py +518 -0
- doc_qa.py +751 -0
- docker +34 -0
- medical_swarm.py +149 -0
- metrics_tracker.py +206 -0
__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .docparser import DocParser
|
| 2 |
+
from .chunkers import Chunker, SemanticChunker, AgenticChunker
|
| 3 |
+
from .imageprocessing import ImageProcessor
|
| 4 |
+
from .doc_qa import AgenticQA
|
| 5 |
+
from src.indexing import indexing
|
app_1.py
ADDED
|
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, render_template, session, url_for, redirect, jsonify
|
| 2 |
+
from flask_session import Session
|
| 3 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
| 4 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 5 |
+
import os
|
| 6 |
+
import logging
|
| 7 |
+
import re
|
| 8 |
+
import traceback
|
| 9 |
+
import base64
|
| 10 |
+
import shutil
|
| 11 |
+
import zipfile
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
from huggingface_hub import hf_hub_download
|
| 14 |
+
from PIL import Image
|
| 15 |
+
|
| 16 |
+
# --- Core Application Imports ---
|
| 17 |
+
# Make sure you have an empty __init__.py file in your 'src' folder
|
| 18 |
+
from api import api_bp
|
| 19 |
+
from src.medical_swarm import run_medical_swarm
|
| 20 |
+
from src.utils import load_rag_system, standardize_query, get_standalone_question, parse_agent_response, markdown_bold_to_html
|
| 21 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 22 |
+
|
| 23 |
+
# Setup logging
|
| 24 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
|
| 27 |
+
# Load environment variables
|
| 28 |
+
load_dotenv()
|
| 29 |
+
|
| 30 |
+
# --- 1. DATABASE SETUP FUNCTION (For Deployment) ---
|
| 31 |
+
def setup_database():
|
| 32 |
+
"""Downloads and unzips the ChromaDB folder from Hugging Face Datasets."""
|
| 33 |
+
|
| 34 |
+
# --- !!! IMPORTANT !!! ---
|
| 35 |
+
# YOU MUST CHANGE THIS to your Hugging Face Dataset repo ID
|
| 36 |
+
# For example: "your_username/your_database_repo_name"
|
| 37 |
+
DATASET_REPO_ID = "WanIrfan/atlast-db"
|
| 38 |
+
# -------------------------
|
| 39 |
+
|
| 40 |
+
ZIP_FILENAME = "chroma_db.zip"
|
| 41 |
+
DB_DIR = "chroma_db"
|
| 42 |
+
|
| 43 |
+
if os.path.exists(DB_DIR) and os.listdir(DB_DIR):
|
| 44 |
+
logger.info("✅ Database directory already exists. Skipping download.")
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
logger.info(f"📥 Downloading database from HF Hub: {DATASET_REPO_ID}")
|
| 48 |
+
try:
|
| 49 |
+
zip_path = hf_hub_download(
|
| 50 |
+
repo_id=DATASET_REPO_ID,
|
| 51 |
+
filename=ZIP_FILENAME,
|
| 52 |
+
repo_type="dataset",
|
| 53 |
+
# You might need to add your HF token to secrets if the dataset is private
|
| 54 |
+
# token=os.getenv("HF_TOKEN")
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
logger.info(f"📦 Unzipping database from {zip_path}...")
|
| 58 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 59 |
+
zip_ref.extractall(".") # Extracts to the root, creating ./chroma_db
|
| 60 |
+
|
| 61 |
+
logger.info("✅ Database setup complete!")
|
| 62 |
+
|
| 63 |
+
# Clean up the downloaded zip file to save space
|
| 64 |
+
if os.path.exists(zip_path):
|
| 65 |
+
os.remove(zip_path)
|
| 66 |
+
|
| 67 |
+
except Exception as e:
|
| 68 |
+
logger.error(f"❌ CRITICAL ERROR setting up database: {e}", exc_info=True)
|
| 69 |
+
# This will likely cause the RAG system to fail loading, which is expected
|
| 70 |
+
# if the database isn't available.
|
| 71 |
+
|
| 72 |
+
# --- RUN DATABASE SETUP *BEFORE* INITIALIZING THE APP ---
|
| 73 |
+
setup_database()
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# --- STANDARD FLASK APP INITIALIZATION ---
|
| 77 |
+
app = Flask(__name__)
|
| 78 |
+
app.secret_key = os.urandom(24) # Set a secret key for session signing
|
| 79 |
+
|
| 80 |
+
# --- CONFIGURE SERVER-SIDE SESSIONS ---
|
| 81 |
+
app.config["SESSION_PERMANENT"] = False
|
| 82 |
+
app.config["SESSION_TYPE"] = "filesystem"
|
| 83 |
+
Session(app)
|
| 84 |
+
|
| 85 |
+
google_api_key = os.getenv("GOOGLE_API_KEY")
|
| 86 |
+
if not google_api_key:
|
| 87 |
+
logger.warning("⚠️ GOOGLE_API_KEY not found in environment variables. LLM calls will fail.")
|
| 88 |
+
else:
|
| 89 |
+
logger.info("GOOGLE_API_KEY loaded successfully.")
|
| 90 |
+
|
| 91 |
+
# Initialize LLM
|
| 92 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash", temperature=0.05, google_api_key=google_api_key)
|
| 93 |
+
|
| 94 |
+
# --- LOAD RAG SYSTEMS (AFTER DB SETUP) ---
|
| 95 |
+
logger.info("🌟 Starting Multi-Domain AI Assistant...")
|
| 96 |
+
try:
|
| 97 |
+
rag_systems = {
|
| 98 |
+
'medical': load_rag_system(collection_name="medical_csv_Agentic_retrieval", domain="medical"),
|
| 99 |
+
'islamic': load_rag_system(collection_name="islamic_texts_Agentic_retrieval", domain="islamic"),
|
| 100 |
+
'insurance': load_rag_system(collection_name="etiqa_Agentic_retrieval", domain="insurance")
|
| 101 |
+
}
|
| 102 |
+
except Exception as e:
|
| 103 |
+
logger.error(f"❌ FAILED to load RAG systems. Check database path and permissions. Error: {e}", exc_info=True)
|
| 104 |
+
rag_systems = {'medical': None, 'islamic': None, 'insurance': None}
|
| 105 |
+
|
| 106 |
+
# Store systems and LLM on the app for blueprints
|
| 107 |
+
app.rag_systems = rag_systems
|
| 108 |
+
app.llm = llm
|
| 109 |
+
|
| 110 |
+
# Register the API blueprint
|
| 111 |
+
app.register_blueprint(api_bp)
|
| 112 |
+
logger.info(f"✅ API Blueprint registered. API endpoints are now available under /api")
|
| 113 |
+
|
| 114 |
+
# Check initialization status
|
| 115 |
+
logger.info("\n📊 SYSTEM STATUS:")
|
| 116 |
+
for domain, system in rag_systems.items():
|
| 117 |
+
status = "✅ Ready" if system else "❌ Failed (DB missing?)"
|
| 118 |
+
logger.info(f" {domain}: {status}")
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# --- FLASK ROUTES ---
|
| 122 |
+
|
| 123 |
+
@app.route("/")
|
| 124 |
+
def homePage():
|
| 125 |
+
# Clear all session history when visiting the home page
|
| 126 |
+
session.pop('medical_history', None)
|
| 127 |
+
session.pop('islamic_history', None)
|
| 128 |
+
session.pop('insurance_history', None)
|
| 129 |
+
session.pop('current_medical_document', None)
|
| 130 |
+
return render_template("homePage.html")
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
@app.route("/medical", methods=["GET", "POST"])
|
| 134 |
+
def medical_page():
|
| 135 |
+
# Use session for history and document context
|
| 136 |
+
if request.method == "GET":
|
| 137 |
+
# Load all latest data from session (or default to empty if not found)
|
| 138 |
+
latest_response = session.pop('latest_medical_response', {}) # POP to clear it after one display
|
| 139 |
+
|
| 140 |
+
answer = latest_response.get('answer', "")
|
| 141 |
+
thoughts = latest_response.get('thoughts', "")
|
| 142 |
+
validation = latest_response.get('validation', "")
|
| 143 |
+
source = latest_response.get('source', "")
|
| 144 |
+
|
| 145 |
+
# Clear history only when a user first navigates (not on redirect)
|
| 146 |
+
if not latest_response and 'medical_history' not in session:
|
| 147 |
+
session.pop('current_medical_document', None)
|
| 148 |
+
|
| 149 |
+
return render_template("medical_page.html",
|
| 150 |
+
history=session.get('medical_history', []),
|
| 151 |
+
answer=answer,
|
| 152 |
+
thoughts=thoughts,
|
| 153 |
+
validation=validation,
|
| 154 |
+
source=source)
|
| 155 |
+
|
| 156 |
+
# POST Request Logic
|
| 157 |
+
answer, thoughts, validation, source = "", "", "", ""
|
| 158 |
+
history = session.get('medical_history', [])
|
| 159 |
+
current_medical_document = session.get('current_medical_document', "")
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
query=standardize_query(request.form.get("query", ""))
|
| 164 |
+
has_image = 'image' in request.files and request.files['image'].filename
|
| 165 |
+
has_document = 'document' in request.files and request.files['document'].filename
|
| 166 |
+
has_query = request.form.get("query") or request.form.get("question", "")
|
| 167 |
+
|
| 168 |
+
logger.info(f"POST request received: has_image={has_image}, has_document={has_document}, has_query={has_query}")
|
| 169 |
+
|
| 170 |
+
if has_document:
|
| 171 |
+
# Scenario 3: Query + Document
|
| 172 |
+
logger.info("Processing Scenario 3: Query + Document with Medical Swarm")
|
| 173 |
+
file = request.files['document']
|
| 174 |
+
try:
|
| 175 |
+
# Store the new document text in the session
|
| 176 |
+
document_text = file.read().decode("utf-8")
|
| 177 |
+
session['current_medical_document'] = document_text
|
| 178 |
+
current_medical_document = document_text # Use the new document for this turn
|
| 179 |
+
except UnicodeDecodeError:
|
| 180 |
+
answer = "Error: Could not decode the uploaded document. Please ensure it is a valid text or PDF file."
|
| 181 |
+
logger.error("Scenario 3: Document decode error")
|
| 182 |
+
thoughts = traceback.format_exc()
|
| 183 |
+
|
| 184 |
+
swarm_answer = run_medical_swarm(current_medical_document, query)
|
| 185 |
+
answer = markdown_bold_to_html(swarm_answer)
|
| 186 |
+
|
| 187 |
+
history.append(HumanMessage(content=f"[Document Uploaded] Query: '{query}'"))
|
| 188 |
+
history.append(AIMessage(content=swarm_answer))
|
| 189 |
+
thoughts = "Swarm analysis complete. The process is orchestrated and does not use the ReAct thought process. You can now ask follow-up questions."
|
| 190 |
+
source= "Medical Swarm"
|
| 191 |
+
validation = (True, "Swarm output generated.") # Swarm has its own validation logic
|
| 192 |
+
|
| 193 |
+
elif has_image :
|
| 194 |
+
#Scenario 1
|
| 195 |
+
logger.info("Processing Multimodal RAG: Query + Image")
|
| 196 |
+
# --- Step 1 & 2: Image Setup & Vision Analysis ---
|
| 197 |
+
file = request.files['image']
|
| 198 |
+
upload_dir = "Uploads"
|
| 199 |
+
os.makedirs(upload_dir, exist_ok=True)
|
| 200 |
+
image_path = os.path.join(upload_dir, file.filename)
|
| 201 |
+
|
| 202 |
+
try:
|
| 203 |
+
file.save(image_path)
|
| 204 |
+
file.close()
|
| 205 |
+
|
| 206 |
+
with open(image_path, "rb") as img_file:
|
| 207 |
+
img_data = base64.b64encode(img_file.read()).decode("utf-8")
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
vision_prompt = f"Analyze this image and identify the main subject in a single, concise sentence. The user's query is: '{query}'"
|
| 211 |
+
message = HumanMessage(content=[
|
| 212 |
+
{"type": "text", "text": vision_prompt},
|
| 213 |
+
{"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_data}"}
|
| 214 |
+
])
|
| 215 |
+
vision_response = llm.invoke([message])
|
| 216 |
+
visual_prediction = vision_response.content
|
| 217 |
+
logger.info(f"Vision Prediction: {visual_prediction}")
|
| 218 |
+
|
| 219 |
+
# --- Create an Enhanced Query ---
|
| 220 |
+
enhanced_query = (
|
| 221 |
+
f'User Query: "{query}" '
|
| 222 |
+
f'Context from an image provided by the LLM: "{visual_prediction}" '
|
| 223 |
+
'Based on the user\'s query and the context from LLM, provide a comprehensive answer.'
|
| 224 |
+
)
|
| 225 |
+
logger.info(f"Enhanced query : {enhanced_query}")
|
| 226 |
+
|
| 227 |
+
agent = rag_systems['medical']
|
| 228 |
+
if not agent: raise Exception("Medical RAG system is not loaded.")
|
| 229 |
+
response_dict = agent.answer(enhanced_query, chat_history=history)
|
| 230 |
+
answer, thoughts, validation, source = parse_agent_response(response_dict)
|
| 231 |
+
history.append(HumanMessage(content=query))
|
| 232 |
+
history.append(AIMessage(content=answer))
|
| 233 |
+
|
| 234 |
+
finally:
|
| 235 |
+
if os.path.exists(image_path):
|
| 236 |
+
try:
|
| 237 |
+
os.remove(image_path)
|
| 238 |
+
logger.info(f"Successfully deleted temporary image file: {image_path}")
|
| 239 |
+
except PermissionError as e:
|
| 240 |
+
logger.warning(f"Could not remove {image_path} after processing. "
|
| 241 |
+
f"File may be locked by another process. Error: {e}")
|
| 242 |
+
|
| 243 |
+
elif query:
|
| 244 |
+
# --- SCENARIO 2: TEXT-ONLY QUERY OR SWARM FOLLOW-UP ---
|
| 245 |
+
history_for_agent = history
|
| 246 |
+
if current_medical_document:
|
| 247 |
+
logger.info("Processing Follow-up Query for Document")
|
| 248 |
+
history_for_agent = [HumanMessage(content=f"We are discussing this document:\n{current_medical_document}")] + history
|
| 249 |
+
else:
|
| 250 |
+
logger.info("Processing Text RAG query for Medical domain")
|
| 251 |
+
|
| 252 |
+
logger.info(f"Original Query: '{query}'")
|
| 253 |
+
print(f"📚 Using chat history with {len(history)} previous messages to create standalone query")
|
| 254 |
+
standalone_query = get_standalone_question(query, history_for_agent,llm)
|
| 255 |
+
logger.info(f"Standalone Query: '{standalone_query}'")
|
| 256 |
+
|
| 257 |
+
agent = rag_systems['medical']
|
| 258 |
+
if not agent: raise Exception("Medical RAG system is not loaded.")
|
| 259 |
+
response_dict = agent.answer(standalone_query, chat_history=history_for_agent)
|
| 260 |
+
answer, thoughts, validation, source = parse_agent_response(response_dict)
|
| 261 |
+
|
| 262 |
+
history.append(HumanMessage(content=query))
|
| 263 |
+
history.append(AIMessage(content=answer))
|
| 264 |
+
|
| 265 |
+
else:
|
| 266 |
+
raise ValueError("No query or file provided.")
|
| 267 |
+
except Exception as e:
|
| 268 |
+
logger.error(f"Error on /medical page: {e}", exc_info=True)
|
| 269 |
+
answer = f"An error occurred: {e}"
|
| 270 |
+
thoughts = traceback.format_exc()
|
| 271 |
+
|
| 272 |
+
# Save updated history and LATEST RESPONSE DATA back to the session
|
| 273 |
+
session['medical_history'] = history
|
| 274 |
+
session['latest_medical_response'] = {
|
| 275 |
+
'answer': answer,
|
| 276 |
+
'thoughts': thoughts,
|
| 277 |
+
'validation': validation,
|
| 278 |
+
'source': source
|
| 279 |
+
}
|
| 280 |
+
session.modified = True
|
| 281 |
+
|
| 282 |
+
logger.debug(f"Redirecting after saving latest response.")
|
| 283 |
+
return redirect(url_for('medical_page'))
|
| 284 |
+
|
| 285 |
+
@app.route("/medical/clear")
|
| 286 |
+
def clear_medical_chat():
|
| 287 |
+
session.pop('medical_history', None)
|
| 288 |
+
session.pop('current_medical_document', None)
|
| 289 |
+
logger.info("Medical chat history cleared.")
|
| 290 |
+
return redirect(url_for('medical_page'))
|
| 291 |
+
|
| 292 |
+
@app.route("/islamic", methods=["GET", "POST"])
|
| 293 |
+
def islamic_page():
|
| 294 |
+
#Use session
|
| 295 |
+
|
| 296 |
+
if request.method == "GET":
|
| 297 |
+
# Load all latest data from session (or default to empty if not found)
|
| 298 |
+
latest_response = session.pop('latest_islamic_response', {}) # POP to clear it after one display
|
| 299 |
+
|
| 300 |
+
answer = latest_response.get('answer', "")
|
| 301 |
+
thoughts = latest_response.get('thoughts', "")
|
| 302 |
+
validation = latest_response.get('validation', "")
|
| 303 |
+
source = latest_response.get('source', "")
|
| 304 |
+
|
| 305 |
+
# Clear history only when a user first navigates (no latest_response and no current history)
|
| 306 |
+
if not latest_response and 'islamic_history' not in session:
|
| 307 |
+
session.pop('islamic_history', None)
|
| 308 |
+
|
| 309 |
+
return render_template("islamic_page.html",
|
| 310 |
+
history=session.get('islamic_history', []),
|
| 311 |
+
answer=answer,
|
| 312 |
+
thoughts=thoughts,
|
| 313 |
+
validation=validation,
|
| 314 |
+
source=source)
|
| 315 |
+
|
| 316 |
+
# POST Request Logic
|
| 317 |
+
answer, thoughts, validation, source = "", "", "", ""
|
| 318 |
+
history = session.get('islamic_history', [])
|
| 319 |
+
|
| 320 |
+
# This try/except block wraps the ENTIRE POST logic
|
| 321 |
+
try:
|
| 322 |
+
query = standardize_query(request.form.get("query", ""))
|
| 323 |
+
has_image = 'image' in request.files and request.files['image'].filename
|
| 324 |
+
|
| 325 |
+
final_query = query # Default to the original query
|
| 326 |
+
|
| 327 |
+
if has_image:
|
| 328 |
+
logger.info("Processing Multimodal RAG query for Islamic domain")
|
| 329 |
+
|
| 330 |
+
file = request.files['image']
|
| 331 |
+
|
| 332 |
+
upload_dir = "Uploads"
|
| 333 |
+
os.makedirs(upload_dir, exist_ok=True)
|
| 334 |
+
image_path = os.path.join(upload_dir, file.filename)
|
| 335 |
+
|
| 336 |
+
try:
|
| 337 |
+
file.save(image_path)
|
| 338 |
+
file.close()
|
| 339 |
+
|
| 340 |
+
with open(image_path, "rb") as img_file:
|
| 341 |
+
img_base64 = base64.b64encode(img_file.read()).decode("utf-8")
|
| 342 |
+
|
| 343 |
+
vision_prompt = f"Analyze this image's main subject. User's query is: '{query}'"
|
| 344 |
+
message = HumanMessage(content=[{"type": "text", "text": vision_prompt}, {"type": "image_url", "image_url": f"data:image/jpeg;base64,{img_base64}"}])
|
| 345 |
+
visual_prediction = llm.invoke([message]).content
|
| 346 |
+
|
| 347 |
+
enhanced_query = (
|
| 348 |
+
f'User Query: "{query}" '
|
| 349 |
+
f'Context from an image provided by the LLM: "{visual_prediction}" '
|
| 350 |
+
'Based on the user\'s query and the context from LLM, provide a comprehensive answer.'
|
| 351 |
+
)
|
| 352 |
+
logger.info(f"Create enchanced query : {enhanced_query}")
|
| 353 |
+
|
| 354 |
+
final_query = enhanced_query
|
| 355 |
+
|
| 356 |
+
finally:
|
| 357 |
+
if os.path.exists(image_path):
|
| 358 |
+
try:
|
| 359 |
+
os.remove(image_path)
|
| 360 |
+
logger.info(f"Successfully cleaned up {image_path}")
|
| 361 |
+
except PermissionError as e:
|
| 362 |
+
logger.warning(f"Could not remove {image_path} after processing. "
|
| 363 |
+
f"File may be locked. Error: {e}")
|
| 364 |
+
|
| 365 |
+
elif query: # Only run text logic if there's a query and no image
|
| 366 |
+
logger.info("Processing Text RAG query for Islamic domain")
|
| 367 |
+
standalone_query = get_standalone_question(query, history,llm)
|
| 368 |
+
logger.info(f"Original Query: '{query}'")
|
| 369 |
+
print(f"📚 Using chat history with {len(history)} previous messages to create standalone query")
|
| 370 |
+
logger.info(f"Standalone Query: '{standalone_query}'")
|
| 371 |
+
final_query = standalone_query
|
| 372 |
+
|
| 373 |
+
if not final_query:
|
| 374 |
+
raise ValueError("No query or file provided.")
|
| 375 |
+
|
| 376 |
+
agent = rag_systems['islamic']
|
| 377 |
+
if not agent: raise Exception("Islamic RAG system is not loaded.")
|
| 378 |
+
response_dict = agent.answer(final_query, chat_history=history)
|
| 379 |
+
answer, thoughts , validation, source = parse_agent_response(response_dict)
|
| 380 |
+
history.append(HumanMessage(content=query))
|
| 381 |
+
history.append(AIMessage(content=answer))
|
| 382 |
+
|
| 383 |
+
except Exception as e:
|
| 384 |
+
logger.error(f"Error on /islamic page: {e}", exc_info=True)
|
| 385 |
+
answer = f"An error occurred: {e}"
|
| 386 |
+
thoughts = traceback.format_exc()
|
| 387 |
+
|
| 388 |
+
# Save updated history and LATEST RESPONSE DATA back to the session
|
| 389 |
+
session['islamic_history'] = history
|
| 390 |
+
session['latest_islamic_response'] = {
|
| 391 |
+
'answer': answer,
|
| 392 |
+
'thoughts': thoughts,
|
| 393 |
+
'validation': validation,
|
| 394 |
+
'source': source
|
| 395 |
+
}
|
| 396 |
+
session.modified = True
|
| 397 |
+
|
| 398 |
+
logger.debug(f"Redirecting after saving latest response.")
|
| 399 |
+
return redirect(url_for('islamic_page'))
|
| 400 |
+
|
| 401 |
+
@app.route("/islamic/clear")
|
| 402 |
+
def clear_islamic_chat():
|
| 403 |
+
session.pop('islamic_history', None)
|
| 404 |
+
logger.info("Islamic chat history cleared.")
|
| 405 |
+
return redirect(url_for('islamic_page'))
|
| 406 |
+
|
| 407 |
+
@app.route("/insurance", methods=["GET", "POST"])
|
| 408 |
+
def insurance_page():
|
| 409 |
+
if request.method == "GET" :
|
| 410 |
+
latest_response = session.pop('latest_insurance_response',{})
|
| 411 |
+
|
| 412 |
+
answer = latest_response.get('answer', "")
|
| 413 |
+
thoughts = latest_response.get('thoughts', "")
|
| 414 |
+
validation = latest_response.get('validation', "")
|
| 415 |
+
source = latest_response.get('source', "")
|
| 416 |
+
|
| 417 |
+
if not latest_response and 'insurance_history' not in session:
|
| 418 |
+
session.pop('insurance_history', None)
|
| 419 |
+
|
| 420 |
+
return render_template("insurance_page.html", # You will need to create this HTML file
|
| 421 |
+
history=session.get('insurance_history', []),
|
| 422 |
+
answer=answer,
|
| 423 |
+
thoughts=thoughts,
|
| 424 |
+
validation=validation,
|
| 425 |
+
source=source)
|
| 426 |
+
|
| 427 |
+
# POST Request Logic
|
| 428 |
+
answer, thoughts, validation, source = "", "", "", ""
|
| 429 |
+
history = session.get('insurance_history', [])
|
| 430 |
+
|
| 431 |
+
try:
|
| 432 |
+
query = standardize_query(request.form.get("query", ""))
|
| 433 |
+
|
| 434 |
+
if query:
|
| 435 |
+
logger.info("Processing Text RAG query for Insurance domain")
|
| 436 |
+
standalone_query = get_standalone_question(query, history, llm)
|
| 437 |
+
logger.info(f"Original Query: '{query}'")
|
| 438 |
+
logger.info(f"Standalone Query: '{standalone_query}'")
|
| 439 |
+
|
| 440 |
+
agent = rag_systems['insurance']
|
| 441 |
+
if not agent: raise Exception("Insurance RAG system is not loaded.")
|
| 442 |
+
response_dict = agent.answer(standalone_query, chat_history=history)
|
| 443 |
+
answer, thoughts, validation, source = parse_agent_response(response_dict)
|
| 444 |
+
|
| 445 |
+
history.append(HumanMessage(content=query))
|
| 446 |
+
history.append(AIMessage(content=answer))
|
| 447 |
+
else:
|
| 448 |
+
raise ValueError("No query provided.")
|
| 449 |
+
|
| 450 |
+
except Exception as e:
|
| 451 |
+
logger.error(f"Error on /insurance page: {e}", exc_info=True)
|
| 452 |
+
answer = f"An error occurred: {e}"
|
| 453 |
+
thoughts = traceback.format_exc()
|
| 454 |
+
|
| 455 |
+
session['insurance_history'] = history
|
| 456 |
+
session['latest_insurance_response'] = {
|
| 457 |
+
'answer': answer,
|
| 458 |
+
'thoughts': thoughts,
|
| 459 |
+
'validation': validation,
|
| 460 |
+
'source': source
|
| 461 |
+
}
|
| 462 |
+
session.modified = True
|
| 463 |
+
|
| 464 |
+
logger.debug(f"Redirecting after saving latest response.")
|
| 465 |
+
return redirect(url_for('insurance_page'))
|
| 466 |
+
|
| 467 |
+
@app.route("/insurance/clear")
|
| 468 |
+
def clear_insurance_chat():
|
| 469 |
+
session.pop('insurance_history', None)
|
| 470 |
+
logger.info("Insurance chat history cleared.")
|
| 471 |
+
return redirect(url_for('insurance_page'))
|
| 472 |
+
|
| 473 |
+
@app.route("/about", methods=["GET"])
|
| 474 |
+
def about():
|
| 475 |
+
return render_template("about.html")
|
| 476 |
+
|
| 477 |
+
@app.route('/metrics/<domain>')
|
| 478 |
+
def get_metrics(domain):
|
| 479 |
+
"""API endpoint to get metrics for a specific domain."""
|
| 480 |
+
try:
|
| 481 |
+
if domain == "medical" and rag_systems['medical']:
|
| 482 |
+
stats = rag_systems['medical'].metrics_tracker.get_stats()
|
| 483 |
+
elif domain == "islamic" and rag_systems['islamic']:
|
| 484 |
+
stats = rag_systems['islamic'].metrics_tracker.get_stats()
|
| 485 |
+
elif domain == "insurance" and rag_systems['insurance']:
|
| 486 |
+
stats = rag_systems['insurance'].metrics_tracker.get_stats()
|
| 487 |
+
elif not rag_systems.get(domain):
|
| 488 |
+
return jsonify({"error": f"{domain} RAG system not loaded"}), 500
|
| 489 |
+
else:
|
| 490 |
+
return jsonify({"error": "Invalid domain"}), 400
|
| 491 |
+
|
| 492 |
+
return jsonify(stats)
|
| 493 |
+
except Exception as e:
|
| 494 |
+
return jsonify({"error": str(e)}), 500
|
| 495 |
+
|
| 496 |
+
@app.route('/metrics/reset/<domain>', methods=['POST'])
|
| 497 |
+
def reset_metrics(domain):
|
| 498 |
+
"""Reset metrics for a domain (useful for testing)."""
|
| 499 |
+
try:
|
| 500 |
+
if domain == "medical" and rag_systems['medical']:
|
| 501 |
+
rag_systems['medical'].metrics_tracker.reset_metrics()
|
| 502 |
+
elif domain == "islamic" and rag_systems['islamic']:
|
| 503 |
+
rag_systems['islamic'].metrics_tracker.reset_metrics()
|
| 504 |
+
elif domain == "insurance" and rag_systems['insurance']:
|
| 505 |
+
rag_systems['insurance'].metrics_tracker.reset_metrics()
|
| 506 |
+
elif not rag_systems.get(domain):
|
| 507 |
+
return jsonify({"error": f"{domain} RAG system not loaded"}), 500
|
| 508 |
+
else:
|
| 509 |
+
return jsonify({"error": "Invalid domain"}), 400
|
| 510 |
+
|
| 511 |
+
return jsonify({"success": True, "message": f"Metrics reset for {domain}"})
|
| 512 |
+
except Exception as e:
|
| 513 |
+
return jsonify({"error": str(e)}), 500
|
| 514 |
+
|
| 515 |
+
if __name__ == "__main__":
|
| 516 |
+
logger.info("Starting Flask app for deployment testing...")
|
| 517 |
+
# This port 7860 is what Hugging Face Spaces expects by default
|
| 518 |
+
app.run(host="0.0.0.0", port=7860, debug=False)
|
doc_qa.py
ADDED
|
@@ -0,0 +1,751 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 2 |
+
from langchain_classic import hub
|
| 3 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 4 |
+
from langchain_classic.chains.combine_documents import create_stuff_documents_chain
|
| 5 |
+
from langchain_core.tools import Tool
|
| 6 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 7 |
+
from langchain_community.retrievers import BM25Retriever
|
| 8 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 9 |
+
from langchain_core.output_parsers import JsonOutputParser
|
| 10 |
+
from langchain_classic.agents import AgentExecutor, create_react_agent
|
| 11 |
+
from langchain_core.documents import Document
|
| 12 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
| 13 |
+
from langchain_chroma import Chroma
|
| 14 |
+
from langchain_core.agents import AgentAction
|
| 15 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 16 |
+
from flashrank import Ranker, RerankRequest
|
| 17 |
+
from src.metrics_tracker import MetricsTracker
|
| 18 |
+
import logging
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Setup logging
|
| 22 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
class ContextRetriever:
|
| 26 |
+
def __init__(self, retriever):
|
| 27 |
+
self.retriever = retriever
|
| 28 |
+
|
| 29 |
+
def deduplicate_context(self, context_list):
|
| 30 |
+
"""Deduplicate context entries to avoid repetition."""
|
| 31 |
+
seen = set()
|
| 32 |
+
deduped = []
|
| 33 |
+
for item in context_list:
|
| 34 |
+
if item not in seen:
|
| 35 |
+
seen.add(item)
|
| 36 |
+
deduped.append(item)
|
| 37 |
+
return "\n".join(deduped) if deduped else "No relevant context found."
|
| 38 |
+
|
| 39 |
+
def retrieve(self, query, top_k=5):
|
| 40 |
+
"""
|
| 41 |
+
Retrieve the top-k relevant contexts from ChromaDB based on the query.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
query (str): The query or prediction to search for.
|
| 45 |
+
top_k (int): Number of top results to return (default: 3).
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
str: Deduplicated context string from the top-k results.
|
| 49 |
+
"""
|
| 50 |
+
logger.info(f"Retrieving for query: {query}")
|
| 51 |
+
try:
|
| 52 |
+
# Perform similarity search using ChromaDB retriever
|
| 53 |
+
results = self.retriever.invoke(query, k=top_k)
|
| 54 |
+
logger.info(f"Retrieved documents: {[doc.metadata.get('source') for doc in results]}")
|
| 55 |
+
|
| 56 |
+
# Extract the page content (context) from each result
|
| 57 |
+
contexts = [doc.page_content for doc in results]
|
| 58 |
+
logger.info(f"Context : {contexts}")
|
| 59 |
+
|
| 60 |
+
# Deduplicate the contexts
|
| 61 |
+
deduped_context = self.deduplicate_context(contexts)
|
| 62 |
+
logger.info(f"Deduplicated context: {deduped_context}")
|
| 63 |
+
|
| 64 |
+
return deduped_context
|
| 65 |
+
except Exception as e:
|
| 66 |
+
logger.error(f"Retrieval error: {str(e)}")
|
| 67 |
+
return "Retrieval failed due to error."
|
| 68 |
+
|
| 69 |
+
class LLMComplexityAnalyzer:
|
| 70 |
+
"""
|
| 71 |
+
Analyzes query complexity using an LLM to make a "managerial" decision
|
| 72 |
+
on the optimal retrieval strategy.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
def __init__(self, domain: str, llm: ChatGoogleGenerativeAI):
|
| 76 |
+
self.domain = domain
|
| 77 |
+
self.llm = llm
|
| 78 |
+
|
| 79 |
+
self.system_prompt = (
|
| 80 |
+
"You are a 'Complexity Analyzer' manager for a RAG (Retrieval-Augmented Generation) system. "
|
| 81 |
+
"Your domain of expertise is: **{domain}**."
|
| 82 |
+
"\n"
|
| 83 |
+
"Your task is to analyze the user's query and determine its complexity. Based on this, "
|
| 84 |
+
"you will decide how many documents (k) to retrieve. More complex queries require "
|
| 85 |
+
"more documents to synthesize a good answer."
|
| 86 |
+
"\n"
|
| 87 |
+
"Here are the retrieval strategies:"
|
| 88 |
+
"1. **simple**: For simple, direct fact-finding queries. (e.g., 'What is takaful?') "
|
| 89 |
+
" - Set k = 5"
|
| 90 |
+
"2. **moderate**: For queries that require explanation, some comparison, or have multiple parts. "
|
| 91 |
+
" (e.g., 'What is the difference between madhab Shafi'i and Maliki on prayer?') "
|
| 92 |
+
" - Set k = 10"
|
| 93 |
+
"3. **complex**: For deep, nuanced, multi-step, or highly comparative/synthetic queries. "
|
| 94 |
+
" (e.g., 'Explain in detail the treatment options for type 2 diabetes, comparing "
|
| 95 |
+
" their side effects and suitability for elderly patients.')"
|
| 96 |
+
" - Set k = 15"
|
| 97 |
+
"\n"
|
| 98 |
+
"Analyze the following query and provide your reasoning."
|
| 99 |
+
"\n"
|
| 100 |
+
"**IMPORTANT**: You MUST respond ONLY with a single, valid JSON object. Do not add any "
|
| 101 |
+
"other text. The JSON object must have these three keys:"
|
| 102 |
+
"- `complexity`: (string) Must be one of 'simple', 'moderate', or 'complex'."
|
| 103 |
+
"- `k`: (integer) Must be 5, 10, or 15, corresponding to the complexity."
|
| 104 |
+
"- `reasoning`: (string) A brief 1-sentence explanation for your decision."
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
self.prompt_template = ChatPromptTemplate.from_messages([
|
| 108 |
+
("system", self.system_prompt.format(domain=self.domain)),
|
| 109 |
+
("human", "{query}")
|
| 110 |
+
])
|
| 111 |
+
|
| 112 |
+
self.output_parser = JsonOutputParser()
|
| 113 |
+
|
| 114 |
+
# This chain will output a parsed dictionary
|
| 115 |
+
self.chain = self.prompt_template | self.llm | self.output_parser
|
| 116 |
+
|
| 117 |
+
logger.info(f"🧠 LLMComplexityAnalyzer initialized for '{self.domain}'")
|
| 118 |
+
|
| 119 |
+
def analyze(self, query: str) -> dict:
|
| 120 |
+
"""
|
| 121 |
+
Analyzes query complexity using an LLM and returns the retrieval strategy.
|
| 122 |
+
"""
|
| 123 |
+
logger.info(f"🧠 LLMComplexityAnalyzer: Analyzing query...")
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
# Invoke the chain to get the structured JSON output
|
| 127 |
+
result = self.chain.invoke({"query": query})
|
| 128 |
+
|
| 129 |
+
# Add a 'score' field for compatibility
|
| 130 |
+
score_map = {"simple": 2, "moderate": 4, "complex": 6}
|
| 131 |
+
result['score'] = score_map.get(result.get('complexity'), 0)
|
| 132 |
+
|
| 133 |
+
logger.info(f"🧠 LLM Decision: {result.get('complexity').upper()} (k={result.get('k')})")
|
| 134 |
+
logger.info(f" Reasoning: {result.get('reasoning')}")
|
| 135 |
+
|
| 136 |
+
return result
|
| 137 |
+
|
| 138 |
+
except Exception as e:
|
| 139 |
+
# Fallback in case the LLM fails or returns bad JSON
|
| 140 |
+
logger.error(f"❌ LLMComplexityAnalyzer failed: {e}. Defaulting to 'moderate' strategy.")
|
| 141 |
+
return {
|
| 142 |
+
"complexity": "moderate",
|
| 143 |
+
"k": 12,
|
| 144 |
+
"score": 4,
|
| 145 |
+
"reasoning": "Fallback: LLM analysis or JSON parsing failed."
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
class SwarmRetriever:
|
| 150 |
+
"""
|
| 151 |
+
Multi-retriever swarm that executes parallel retrieval strategies.
|
| 152 |
+
Worker component that takes orders from LLMComplexityAnalyzer.
|
| 153 |
+
"""
|
| 154 |
+
|
| 155 |
+
def __init__(self, chroma_retriever, documents):
|
| 156 |
+
self.dense_retriever = chroma_retriever # Semantic search
|
| 157 |
+
self.bm25_retriever = BM25Retriever.from_documents(documents) # Keyword search
|
| 158 |
+
self.bm25_retriever.k = 20 # Set high, will be limited by k parameter
|
| 159 |
+
logger.info("✅ SwarmRetriever initialized (Dense + BM25 workers)")
|
| 160 |
+
|
| 161 |
+
def retrieve_with_swarm(self, query: str, k: int) -> list:
|
| 162 |
+
"""
|
| 163 |
+
Execute multi-retriever swarm with parallel workers.
|
| 164 |
+
"""
|
| 165 |
+
logger.info(f"🐝 Swarm deployment: {2} workers, target k={k}")
|
| 166 |
+
|
| 167 |
+
# Define worker tasks
|
| 168 |
+
retrieval_tasks = {
|
| 169 |
+
"dense_semantic": lambda: self.dense_retriever.invoke(query, k=k),
|
| 170 |
+
"bm25_keyword": lambda: self.bm25_retriever.invoke(query)[:k],
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
# Execute workers in parallel
|
| 174 |
+
swarm_results = {}
|
| 175 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
| 176 |
+
futures = {
|
| 177 |
+
executor.submit(task): name
|
| 178 |
+
for name, task in retrieval_tasks.items()
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
for future in as_completed(futures):
|
| 182 |
+
worker_name = futures[future]
|
| 183 |
+
try:
|
| 184 |
+
results = future.result()
|
| 185 |
+
swarm_results[worker_name] = results
|
| 186 |
+
logger.info(f" ✅ Worker '{worker_name}': {len(results)} docs")
|
| 187 |
+
except Exception as e:
|
| 188 |
+
logger.error(f" ❌ Worker '{worker_name}' failed: {e}")
|
| 189 |
+
swarm_results[worker_name] = []
|
| 190 |
+
|
| 191 |
+
# Combine and deduplicate documents
|
| 192 |
+
combined_docs = self._combine_and_deduplicate(swarm_results)
|
| 193 |
+
|
| 194 |
+
return combined_docs
|
| 195 |
+
|
| 196 |
+
def _combine_and_deduplicate(self, swarm_results: dict) -> list:
|
| 197 |
+
"""Combine results from all workers and remove duplicates."""
|
| 198 |
+
all_docs = []
|
| 199 |
+
seen_content = set()
|
| 200 |
+
worker_contributions = {}
|
| 201 |
+
|
| 202 |
+
for worker_name, docs in swarm_results.items():
|
| 203 |
+
for doc in docs:
|
| 204 |
+
# Use first 200 chars as hash to detect duplicates
|
| 205 |
+
content_hash = hash(doc.page_content[:200])
|
| 206 |
+
|
| 207 |
+
if content_hash not in seen_content:
|
| 208 |
+
seen_content.add(content_hash)
|
| 209 |
+
|
| 210 |
+
# Tag document with source worker
|
| 211 |
+
doc.metadata['swarm_worker'] = worker_name
|
| 212 |
+
all_docs.append(doc)
|
| 213 |
+
|
| 214 |
+
# Track contributions
|
| 215 |
+
worker_contributions[worker_name] = \
|
| 216 |
+
worker_contributions.get(worker_name, 0) + 1
|
| 217 |
+
|
| 218 |
+
logger.info(f"🐝 Swarm combined: {len(all_docs)} unique docs")
|
| 219 |
+
logger.info(f" Worker contributions: {worker_contributions}")
|
| 220 |
+
|
| 221 |
+
return all_docs
|
| 222 |
+
|
| 223 |
+
class AgenticQA:
|
| 224 |
+
def __init__(self, config=None):
|
| 225 |
+
logger.info("Initializing AgenticQA...")
|
| 226 |
+
|
| 227 |
+
# Load a small, fast reranker model. This runs locally.
|
| 228 |
+
try:
|
| 229 |
+
self.reranker = Ranker(model_name="ms-marco-MiniLM-L-12-v2")
|
| 230 |
+
logger.info("FlashRank Reranker loaded successfully.")
|
| 231 |
+
except Exception as e:
|
| 232 |
+
logger.error(f"Failed to load FlashRank reranker: {e}")
|
| 233 |
+
self.reranker = None
|
| 234 |
+
|
| 235 |
+
self.contextualize_q_system_prompt = (
|
| 236 |
+
"Given a chat history and the latest user question which might reference context in the chat history, "
|
| 237 |
+
"formulate a standalone question which can be understood without the chat history. "
|
| 238 |
+
"IMPORTANT: DO NOT provide any answers or explanations. ONLY rephrase the question if needed. "
|
| 239 |
+
"If the question is already clear and standalone, return it exactly as is. "
|
| 240 |
+
"Output ONLY the reformulated question, nothing else."
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
self.contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
| 244 |
+
[("system", self.contextualize_q_system_prompt),
|
| 245 |
+
MessagesPlaceholder("chat_history"),
|
| 246 |
+
("human", "{input}")]
|
| 247 |
+
)
|
| 248 |
+
self.qa_system_prompt = (
|
| 249 |
+
"You are an assistant that answers questions in a specific domain for citizens mainly in Malaysia, "
|
| 250 |
+
"depending on the context. "
|
| 251 |
+
"You will receive:\n"
|
| 252 |
+
" • domain = {domain} (either 'medical', 'islamic' , or 'insurance')\n"
|
| 253 |
+
" • context = relevant retrieved passages\n"
|
| 254 |
+
" • user question\n\n"
|
| 255 |
+
"If the context does not contain the answer, **YOU MUST SAY 'I do not know'** or 'I cannot find that information in the provided documents.' Do not use your general knowledge.\n\n"
|
| 256 |
+
"Instructions based on domain:\n"
|
| 257 |
+
"1. If domain = 'medical' :\n"
|
| 258 |
+
" - Answer the question in clear, simple layperson language, "
|
| 259 |
+
" - Citing your sources (e.g. article name, section)."
|
| 260 |
+
" - Add a medical disclaimer: “I am not a doctor…”.\n"
|
| 261 |
+
"2. If domain = 'islamic':\n"
|
| 262 |
+
" - **ALWAYS present both Shafi'i AND Maliki perspectives** if the question is about fiqh/rulings\n"
|
| 263 |
+
" - **Cite specific sources**: Always mention the book name (e.g., 'According to Muwatta Imam Malik...', 'Minhaj al-Talibin states...', 'Umdat al-Salik explains...')\n"
|
| 264 |
+
" - **Structure answer as**:\n"
|
| 265 |
+
" - Shafi'i view (from Umdat al-Salik/Minhaj): [ruling with citation]\n"
|
| 266 |
+
" - Maliki view (from Muwatta): [ruling with citation]\n"
|
| 267 |
+
" - If they agree: mention the consensus\n"
|
| 268 |
+
" - If they differ: present both views objectively without favoring one\n"
|
| 269 |
+
" - **For hadith questions**: provide the narration text, source (book name, hadith number)\n "
|
| 270 |
+
" - - **If ruling has EXCEPTIONS** (like 'except for...', 'unless...'), YOU MUST include them. "
|
| 271 |
+
" If context doesn't show exceptions but the ruling seems absolute, indicate this uncertainty.\n"
|
| 272 |
+
" - If the context does not contain relevant information from BOTH madhabs, acknowledge which sources you have "
|
| 273 |
+
" (e.g., 'Based on Shafi'i sources only...') and suggest consulting additional madhab resources.\n"
|
| 274 |
+
" - **Always end with**: 'This is not a fatwa. Consult a local scholar for guidance specific to your situation.'\n"
|
| 275 |
+
" - Always include hadith narration or quran verse as evidence (if it exists) in the final response "
|
| 276 |
+
" - Keep answers concise but comprehensive enough to show different scholarly views.\n\n"
|
| 277 |
+
|
| 278 |
+
"3. If domain = 'insurance':\n"
|
| 279 |
+
" - Your knowledge is STRICTLY limited to Etiqa Takaful (Motor and Car policies).\n"
|
| 280 |
+
" - First, try to answer ONLY using the provided <context>.\n"
|
| 281 |
+
" - **If the answer is not in the context, YOU MUST SAY 'I do not have information on that specific topic.'** Do not make up an answer.\n"
|
| 282 |
+
" - If the user asks about other Etiqa products (e.g., medical, travel), you MUST use the 'EtiqaWebSearch' tool.\n"
|
| 283 |
+
" - If the user asks about another insurance company (e.g., 'Prudential', 'Takaful Ikhlas'), state that you can only answer about Etiqa Takaful.\n"
|
| 284 |
+
" - If the user asks a general insurance question (e.g., 'What is takaful?', 'What is an excess?'), use the 'GeneralWebSearch' tool.\n"
|
| 285 |
+
|
| 286 |
+
"4. For ALL domains: If the context does not contain the answer, do not make one up. Be honest.\n\n"
|
| 287 |
+
"Context:\n"
|
| 288 |
+
"{context}"
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
self.qa_prompt = ChatPromptTemplate.from_messages(
|
| 292 |
+
[("system", self.qa_system_prompt),
|
| 293 |
+
MessagesPlaceholder("chat_history"),
|
| 294 |
+
("human", "{input}")]
|
| 295 |
+
)
|
| 296 |
+
self.llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash",temperature=0.05)
|
| 297 |
+
# --- START: NEW QUERY REFINER ---
|
| 298 |
+
self.refiner_system_prompt = (
|
| 299 |
+
"You are an expert search query refiner. Your task is to take a user's question "
|
| 300 |
+
"and rewrite it to be a perfect, concise search query for a database. "
|
| 301 |
+
"Remove all conversational fluff, emotion, and filler words. "
|
| 302 |
+
"Distill the query to its core semantic intent. "
|
| 303 |
+
"For example:"
|
| 304 |
+
"- 'Hi, I was wondering if I can touch a dog if I found it is cute?' becomes 'ruling on touching a dog in islam'"
|
| 305 |
+
"- 'What are the treatments for, like, a common cold?' becomes 'common cold treatment options'"
|
| 306 |
+
"- 'Tell me about diabetes' becomes 'what is diabetes'"
|
| 307 |
+
"Output ONLY the refined query, nothing else."
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
self.refiner_prompt = ChatPromptTemplate.from_messages([
|
| 311 |
+
("system", self.refiner_system_prompt),
|
| 312 |
+
("human", "{query}")
|
| 313 |
+
])
|
| 314 |
+
|
| 315 |
+
self.refiner_chain = self.refiner_prompt | self.llm
|
| 316 |
+
logger.info("✅ Query Refiner chain initialized.")
|
| 317 |
+
# --- END: NEW QUERY REFINER ---
|
| 318 |
+
|
| 319 |
+
self.react_docstore_prompt = hub.pull("aallali/react_tool_priority")
|
| 320 |
+
self.answer_validator = AnswerValidatorAgent(self.llm)
|
| 321 |
+
|
| 322 |
+
self.retriever = None
|
| 323 |
+
self.agent_executor = None
|
| 324 |
+
self.tools = [] # Initialize the attribute
|
| 325 |
+
self.domain = "general"
|
| 326 |
+
self.answer_validator = None
|
| 327 |
+
self.retrieval_agent = None
|
| 328 |
+
|
| 329 |
+
if config:
|
| 330 |
+
logger.info(f"Configuring AgenticQA with provided config: {config}")
|
| 331 |
+
try:
|
| 332 |
+
collection_name = config["retriever"]["collection_name"]
|
| 333 |
+
persist_directory = config["retriever"]["persist_directory"]
|
| 334 |
+
self.domain = config.get("domain", "general") # Get domain from config
|
| 335 |
+
|
| 336 |
+
# 1. Initialize the embedding function
|
| 337 |
+
embedding_function = GoogleGenerativeAIEmbeddings(model="models/text-embedding-004")
|
| 338 |
+
|
| 339 |
+
# 2. Connect to the persistent ChromaDB
|
| 340 |
+
db_client = Chroma(
|
| 341 |
+
persist_directory=persist_directory,
|
| 342 |
+
embedding_function=embedding_function,
|
| 343 |
+
collection_name=collection_name
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
# 3. Set the retriever for this instance
|
| 347 |
+
self.retriever = db_client.as_retriever()
|
| 348 |
+
logger.info(f"✅ Successfully created retriever for collection '{collection_name}'")
|
| 349 |
+
# --- START: NEW SWARM INITIALIZATION ---
|
| 350 |
+
logger.info("Initializing Swarm components...")
|
| 351 |
+
# Get all documents from Chroma for BM25
|
| 352 |
+
all_docs_data = db_client.get()
|
| 353 |
+
docs_for_bm25 = [
|
| 354 |
+
Document(page_content=content, metadata=meta)
|
| 355 |
+
for content, meta in zip(
|
| 356 |
+
all_docs_data['documents'],
|
| 357 |
+
all_docs_data['metadatas']
|
| 358 |
+
)
|
| 359 |
+
]
|
| 360 |
+
|
| 361 |
+
# Initialize SwarmRetriever (Workers)
|
| 362 |
+
self.swarm_retriever = SwarmRetriever(self.retriever, docs_for_bm25)
|
| 363 |
+
|
| 364 |
+
# Initialize LLMComplexityAnalyzer (Manager)
|
| 365 |
+
self.complexity_analyzer = LLMComplexityAnalyzer(self.domain, self.llm)
|
| 366 |
+
logger.info("✅ Swarm components (Manager + Workers) initialized.")
|
| 367 |
+
# --- END: NEW SWARM INITIALIZATION ---
|
| 368 |
+
self.metrics_tracker = MetricsTracker(save_path=f"metrics_{self.domain}.json")
|
| 369 |
+
logger.info("✅ Metrics tracker initialized")
|
| 370 |
+
# Initialize validator *after* setting domain
|
| 371 |
+
self.answer_validator = AnswerValidatorAgent(self.llm, self.domain)
|
| 372 |
+
# --- This is the new, simple QA chain that will be used *after* reranking ---
|
| 373 |
+
self.qa_chain = create_stuff_documents_chain(self.llm, self.qa_prompt)
|
| 374 |
+
|
| 375 |
+
self._initialize_agent()
|
| 376 |
+
|
| 377 |
+
except Exception as e:
|
| 378 |
+
logger.error(f"❌ Error during AgenticQA setup for '{self.domain}': {e}", exc_info=True)
|
| 379 |
+
else:
|
| 380 |
+
logger.warning("⚠️ AgenticQA initialized without a config. Retriever will be None.")
|
| 381 |
+
|
| 382 |
+
# --- 5. NEW UPGRADED RAG FUNCTION ---
|
| 383 |
+
# This is our new, smarter "worker" function that includes the reranker.
|
| 384 |
+
def _run_rag_with_reranking(self, query: str, chat_history: list) -> str:
|
| 385 |
+
"""
|
| 386 |
+
Enhanced Swarm-RAG pipeline with adaptive retrieval and reranking.
|
| 387 |
+
|
| 388 |
+
Pipeline:
|
| 389 |
+
1. Contextualize query
|
| 390 |
+
2. Refine query
|
| 391 |
+
3. ComplexityAnalyzer (Manager) determines optimal k
|
| 392 |
+
4. SwarmRetriever (Workers) deploys parallel retrievers with k
|
| 393 |
+
5. Rerank combined swarm results
|
| 394 |
+
6. Filter results by threshold
|
| 395 |
+
7. Generate Answer
|
| 396 |
+
"""
|
| 397 |
+
logger.info(f"--- 🐝 SWARM RAG (with Reranker) PIPELINE RUNNING for query: '{query}' ---")
|
| 398 |
+
|
| 399 |
+
if not self.reranker or not self.swarm_retriever or not self.complexity_analyzer:
|
| 400 |
+
logger.error("Swarm components or Reranker not initialized. Cannot perform RAG.")
|
| 401 |
+
return "Error: RAG components are not available."
|
| 402 |
+
|
| 403 |
+
try:
|
| 404 |
+
# 1. Contextualize query
|
| 405 |
+
standalone_query = query
|
| 406 |
+
if chat_history:
|
| 407 |
+
contextualize_chain = self.contextualize_q_prompt | self.llm
|
| 408 |
+
response = contextualize_chain.invoke({"chat_history": chat_history, "input": query})
|
| 409 |
+
standalone_query = response.content
|
| 410 |
+
logger.info(f"Contextualized query: '{standalone_query}'")
|
| 411 |
+
|
| 412 |
+
# 2 - REFINE QUERY ---
|
| 413 |
+
logger.info("Refining query for search...")
|
| 414 |
+
response = self.refiner_chain.invoke({"query": standalone_query})
|
| 415 |
+
refined_query = response.content.strip()
|
| 416 |
+
logger.info(f"Refined query: '{refined_query}'")
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
# 3. Complexity analysis
|
| 420 |
+
analysis = self.complexity_analyzer.analyze(standalone_query)
|
| 421 |
+
k = analysis['k']
|
| 422 |
+
self._last_complexity_analysis = analysis
|
| 423 |
+
logger.info(f"Query complexity: {analysis['complexity'].upper()} | k={k}")
|
| 424 |
+
|
| 425 |
+
# 4. Retrieve with Swarm (Workers)
|
| 426 |
+
swarm_docs = self.swarm_retriever.retrieve_with_swarm(standalone_query, k=k)
|
| 427 |
+
|
| 428 |
+
if not swarm_docs:
|
| 429 |
+
logger.warning("Swarm Retriever found no documents.")
|
| 430 |
+
return "I do not know the answer to that as it is not in my documents."
|
| 431 |
+
|
| 432 |
+
# 5. Format for Reranker
|
| 433 |
+
passages = [
|
| 434 |
+
{"id": i, "text": doc.page_content, "meta": doc.metadata}
|
| 435 |
+
for i, doc in enumerate(swarm_docs)
|
| 436 |
+
]
|
| 437 |
+
|
| 438 |
+
# 6. Rerank
|
| 439 |
+
logger.info(f"Reranking {len(passages)} swarm-retrieved documents...")
|
| 440 |
+
rerank_request = RerankRequest(query=standalone_query, passages=passages)
|
| 441 |
+
reranked_results = self.reranker.rerank(rerank_request)
|
| 442 |
+
|
| 443 |
+
top_score = reranked_results[0]['score'] if reranked_results else 0
|
| 444 |
+
logger.info(f"Reranking complete. Top score: {top_score:.3f}")
|
| 445 |
+
|
| 446 |
+
# 7. Filter
|
| 447 |
+
threshold = 0.1
|
| 448 |
+
if self.domain == "islamic":
|
| 449 |
+
threshold = 0.05
|
| 450 |
+
elif self.domain == "medical":
|
| 451 |
+
threshold = 0.15
|
| 452 |
+
else:
|
| 453 |
+
threshold = 0.10
|
| 454 |
+
|
| 455 |
+
logger.info(f"Using threshold={threshold} for {self.domain} domain")
|
| 456 |
+
final_docs = []
|
| 457 |
+
worker_contributions = {}
|
| 458 |
+
|
| 459 |
+
for result in reranked_results:
|
| 460 |
+
if result['score'] > threshold:
|
| 461 |
+
# Re-create the Document object from reranked data
|
| 462 |
+
doc = Document(
|
| 463 |
+
page_content=result['text'],
|
| 464 |
+
metadata=result.get('meta', {})
|
| 465 |
+
)
|
| 466 |
+
final_docs.append(doc)
|
| 467 |
+
|
| 468 |
+
# Track worker contributions in final answer
|
| 469 |
+
worker = result.get('meta', {}).get('swarm_worker', 'unknown')
|
| 470 |
+
worker_contributions[worker] = \
|
| 471 |
+
worker_contributions.get(worker, 0) + 1
|
| 472 |
+
|
| 473 |
+
logger.info(f"Filtered to {len(final_docs)} documents above threshold {threshold}.")
|
| 474 |
+
logger.info(f"Final doc contributions: {worker_contributions}")
|
| 475 |
+
|
| 476 |
+
self.metrics_tracker.log_worker_contribution(worker_contributions)
|
| 477 |
+
# 8. Respond
|
| 478 |
+
if not final_docs:
|
| 479 |
+
logger.warning("No documents passed the reranker threshold. Returning 'I don't know.'")
|
| 480 |
+
return "I do not know the answer to that as my document search found no relevant information."
|
| 481 |
+
|
| 482 |
+
# Call the QA chain with the *reranked, filtered* docs
|
| 483 |
+
response = self.qa_chain.invoke({
|
| 484 |
+
"context": final_docs,
|
| 485 |
+
"chat_history": chat_history,
|
| 486 |
+
"input": query,
|
| 487 |
+
"domain": self.domain
|
| 488 |
+
})
|
| 489 |
+
|
| 490 |
+
logger.info("🐝 Swarm RAG pipeline complete. Returning answer.")
|
| 491 |
+
return response
|
| 492 |
+
|
| 493 |
+
except Exception as e:
|
| 494 |
+
logger.error(f"Error in Swarm RAG pipeline: {e}", exc_info=True)
|
| 495 |
+
return "An error occurred while processing your request."
|
| 496 |
+
|
| 497 |
+
def _initialize_agent(self):
|
| 498 |
+
"""Build the ReAct agent"""
|
| 499 |
+
"""A helper function to build the agent components."""
|
| 500 |
+
|
| 501 |
+
logger.info(f"Initializing agent for domain: '{self.domain}'")
|
| 502 |
+
self.context_retriever = ContextRetriever(self.retriever)
|
| 503 |
+
|
| 504 |
+
# Store chat_history as instance variable so tools can access it
|
| 505 |
+
self._current_chat_history = []
|
| 506 |
+
|
| 507 |
+
# We need a RAG chain for the tool
|
| 508 |
+
# history_aware_retriever = create_history_aware_retriever(self.llm, self.retriever, self.contextualize_q_prompt)
|
| 509 |
+
# question_answer_chain = create_stuff_documents_chain(self.llm, self.qa_prompt)
|
| 510 |
+
# rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
| 511 |
+
|
| 512 |
+
def rag_tool_wrapper(query: str) -> str:
|
| 513 |
+
"""Wrapper to pass chat history to RAG pipeline."""
|
| 514 |
+
return self._run_rag_with_reranking(query, self._current_chat_history)
|
| 515 |
+
|
| 516 |
+
self.tools = [
|
| 517 |
+
Tool(
|
| 518 |
+
name="RAG",
|
| 519 |
+
func=rag_tool_wrapper,
|
| 520 |
+
description=(f"Use this tool FIRST to search and answer questions about the {self.domain} domain using internal vector database.")
|
| 521 |
+
)
|
| 522 |
+
|
| 523 |
+
]
|
| 524 |
+
|
| 525 |
+
# --- DOMAIN-SPECIFIC TOOLS ---
|
| 526 |
+
if self.domain == "insurance":
|
| 527 |
+
# Add a specific tool for searching Etiqa's website
|
| 528 |
+
etiqa_search_tool = TavilySearchResults(max_results=3)
|
| 529 |
+
etiqa_search_tool.description = "Use this tool to search the Etiqa Takaful website for products NOT in the RAG context (e.g., medical, travel)."
|
| 530 |
+
# This is a bit of a "hack" to force Tavily to search a specific site.
|
| 531 |
+
# We modify the function it calls.
|
| 532 |
+
original_etiqa_func = etiqa_search_tool.invoke
|
| 533 |
+
def etiqa_site_search(query):
|
| 534 |
+
return original_etiqa_func(f"site:etiqa.com.my {query}")
|
| 535 |
+
|
| 536 |
+
self.tools.append(Tool(
|
| 537 |
+
name="EtiqaWebSearch",
|
| 538 |
+
func=etiqa_site_search,
|
| 539 |
+
description=etiqa_search_tool.description
|
| 540 |
+
))
|
| 541 |
+
|
| 542 |
+
# Add a general web search tool
|
| 543 |
+
self.tools.append(Tool(
|
| 544 |
+
name="GeneralWebSearch",
|
| 545 |
+
func=TavilySearchResults(max_results=2).invoke,
|
| 546 |
+
description="Use this tool as a fallback for general, non-Etiqa questions (e.g., 'What is takaful?')."
|
| 547 |
+
))
|
| 548 |
+
elif self.domain == "islamic":
|
| 549 |
+
# Trusted Islamic sources for Malaysia
|
| 550 |
+
islamic_search = TavilySearchResults(max_results=3)
|
| 551 |
+
|
| 552 |
+
def islamic_trusted_search(query):
|
| 553 |
+
# Search only trusted Malaysian Islamic authorities
|
| 554 |
+
sites = "site:muftiwp.gov.my OR site:zulkiflialbakri.com"
|
| 555 |
+
return islamic_search.invoke(f"{sites} {query}")
|
| 556 |
+
|
| 557 |
+
self.tools.append(Tool(
|
| 558 |
+
name="TrustedIslamicSearch",
|
| 559 |
+
func=islamic_trusted_search,
|
| 560 |
+
description=(
|
| 561 |
+
"Use this tool if RAG has incomplete or no answer. "
|
| 562 |
+
"Searches ONLY trusted Malaysian Islamic sources: "
|
| 563 |
+
"Pejabat Mufti Wilayah Persekutuan (muftiwp.gov.my) and "
|
| 564 |
+
"Dr Zulkifli Mohamad Al Bakri (zulkiflialbakri.com/category/soal-jawab-agama/). "
|
| 565 |
+
"These follow Shafi'i madhab which is official in Malaysia."
|
| 566 |
+
)
|
| 567 |
+
))
|
| 568 |
+
|
| 569 |
+
# General fallback (last resort)
|
| 570 |
+
self.tools.append(Tool(
|
| 571 |
+
name="GeneralWebSearch",
|
| 572 |
+
func=TavilySearchResults(max_results=2).invoke,
|
| 573 |
+
description="Last resort: Use only for general Islamic terms or definitions not found in RAG or trusted sources."
|
| 574 |
+
))
|
| 575 |
+
else:
|
| 576 |
+
# Medical and Islamic domains only get the general web search fallback
|
| 577 |
+
self.tools.append(Tool(
|
| 578 |
+
name="GeneralWebSearch",
|
| 579 |
+
func=TavilySearchResults(max_results=2).invoke,
|
| 580 |
+
description="Use this tool as a fallback if the RAG tool finds no relevant information or if the query is about a general topic."
|
| 581 |
+
))
|
| 582 |
+
|
| 583 |
+
agent = create_react_agent(llm=self.llm, tools=self.tools, prompt=self.react_docstore_prompt)
|
| 584 |
+
|
| 585 |
+
self.agent_executor = AgentExecutor.from_agent_and_tools(
|
| 586 |
+
agent=agent,
|
| 587 |
+
tools=self.tools,
|
| 588 |
+
handle_parsing_errors=True,
|
| 589 |
+
verbose=True,
|
| 590 |
+
return_intermediate_steps=True,
|
| 591 |
+
max_iterations=5
|
| 592 |
+
)
|
| 593 |
+
logger.info(f"✅ Agent Executor(ReAct Agent) created successfully for '{self.domain}'.")
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
def answer(self, query, chat_history=None):
|
| 597 |
+
"""
|
| 598 |
+
Process a query using the agent and returns a clean dictionary.
|
| 599 |
+
|
| 600 |
+
Args:
|
| 601 |
+
query (str): User's question
|
| 602 |
+
chat_history (list): List of previous messages (AIMessage, HumanMessage)
|
| 603 |
+
|
| 604 |
+
Returns:
|
| 605 |
+
dict: Contains 'answer', 'context', 'validation', 'source', 'thoughts'
|
| 606 |
+
"""
|
| 607 |
+
if chat_history is None:
|
| 608 |
+
chat_history = []
|
| 609 |
+
self._current_chat_history = chat_history
|
| 610 |
+
if not self.agent_executor:
|
| 611 |
+
return {"answer": "Error: Agent not initialized.", "context": "", "validation": (False, "Init failed"), "source": "Error"}
|
| 612 |
+
# START TIMING
|
| 613 |
+
start_time = self.metrics_tracker.start_query()
|
| 614 |
+
print(f"\n📝 AGENTIC_QA PROCESSING QUERY: '{query}'")
|
| 615 |
+
|
| 616 |
+
response = self.agent_executor.invoke({
|
| 617 |
+
"input": query,
|
| 618 |
+
"chat_history": chat_history,
|
| 619 |
+
"domain": self.domain, # Pass domain to agent
|
| 620 |
+
"metadata": {
|
| 621 |
+
"domain": self.domain
|
| 622 |
+
}
|
| 623 |
+
})
|
| 624 |
+
thoughts= ""
|
| 625 |
+
|
| 626 |
+
final_answer = response.get("output", "Could not generate an answer")
|
| 627 |
+
|
| 628 |
+
tool_used = None
|
| 629 |
+
if "intermediate_steps" in response:
|
| 630 |
+
thought_log= []
|
| 631 |
+
for step in response["intermediate_steps"]:
|
| 632 |
+
# --- FIX: Unpack the (Action, Observation) tuple first ---
|
| 633 |
+
action, observation = step
|
| 634 |
+
|
| 635 |
+
if isinstance(action, AgentAction) and action.tool:
|
| 636 |
+
tool_used = action.tool #Capture the last tool used
|
| 637 |
+
|
| 638 |
+
# Append Thought, Action, Action Input & Observation
|
| 639 |
+
thought_log.append(action.log)
|
| 640 |
+
thought_log.append(f"\nObservation: {str(observation)}\n---")
|
| 641 |
+
|
| 642 |
+
thoughts = "\n".join(thought_log)
|
| 643 |
+
|
| 644 |
+
# Assign source based on the LAST tool used
|
| 645 |
+
if tool_used == "RAG":
|
| 646 |
+
source = "Etiqa Takaful Database" if self.domain == "insurance" else "Domain Database (RAG)"
|
| 647 |
+
elif tool_used == "EtiqaWebSearch":
|
| 648 |
+
source = "Etiqa Website Search"
|
| 649 |
+
elif tool_used == "TrustedIslamicSearch":
|
| 650 |
+
source = "Mufti WP & Dr Zul Search"
|
| 651 |
+
elif tool_used == "GeneralWebSearch":
|
| 652 |
+
source = "General Web Search"
|
| 653 |
+
else:
|
| 654 |
+
source = "Agent Logic"
|
| 655 |
+
|
| 656 |
+
logger.info(f"Tool used: {tool_used}, Source determined: {source}")
|
| 657 |
+
|
| 658 |
+
# Retrieve context only if the RAG tool was used
|
| 659 |
+
# This call is inefficient (it runs a *second* retrieval), but it
|
| 660 |
+
# respects your architecture and works for logging.
|
| 661 |
+
context = "No RAG context retrieved."
|
| 662 |
+
if source.endswith("(RAG)") or source.startswith("Etiqa Takaful Database"):
|
| 663 |
+
if self.context_retriever:
|
| 664 |
+
context = self.context_retriever.retrieve(query)
|
| 665 |
+
else:
|
| 666 |
+
context = "RAG tool was used, but ContextRetriever not initialized."
|
| 667 |
+
elif "Web" in source:
|
| 668 |
+
context = "Web search results were used. See 'Observation' in thoughts log."
|
| 669 |
+
|
| 670 |
+
validation = self.answer_validator.validate(query, final_answer, source=source)
|
| 671 |
+
# END TIMING
|
| 672 |
+
response_time = self.metrics_tracker.end_query(start_time)
|
| 673 |
+
|
| 674 |
+
complexity_info = getattr(self, '_last_complexity_analysis', None)
|
| 675 |
+
|
| 676 |
+
# LOG METRICS
|
| 677 |
+
self.metrics_tracker.log_query(
|
| 678 |
+
query=query,
|
| 679 |
+
domain=self.domain,
|
| 680 |
+
source=source,
|
| 681 |
+
complexity=complexity_info,
|
| 682 |
+
validation=validation,
|
| 683 |
+
response_time=response_time,
|
| 684 |
+
answer_preview=final_answer
|
| 685 |
+
)
|
| 686 |
+
return {"answer": final_answer, "context": context, "validation": validation, "source": source, "thoughts": thoughts,"response_time": response_time,
|
| 687 |
+
"complexity": complexity_info}
|
| 688 |
+
|
| 689 |
+
class AnswerValidatorAgent:
|
| 690 |
+
def __init__(self, llm, domain="general"):
|
| 691 |
+
self.llm = llm
|
| 692 |
+
self.domain = domain
|
| 693 |
+
self.general_prompt = ChatPromptTemplate.from_messages([
|
| 694 |
+
("system", (
|
| 695 |
+
"You are an answer validator. Check if the generated answer is factually correct "
|
| 696 |
+
"and relevant to the query. Return 'Valid' if the answer is correct and relevant, "
|
| 697 |
+
"or 'Invalid: [reason]' if not, where [reason] is a brief explanation of the issue."
|
| 698 |
+
)),
|
| 699 |
+
("human", "Query: {query}\nAnswer: {answer}")
|
| 700 |
+
])
|
| 701 |
+
self.medical_prompt = ChatPromptTemplate.from_messages([
|
| 702 |
+
("system", (
|
| 703 |
+
"You are an answer validator. Check if the generated answer is factually correct, "
|
| 704 |
+
"relevant to the query, and consistent with known medical knowledge. "
|
| 705 |
+
"Return 'Valid' if the answer is correct and relevant, or 'Invalid: [reason]' if not, "
|
| 706 |
+
"where [reason] is a brief explanation of the issue. "
|
| 707 |
+
"**Pay close attention to contradictions.** If an answer gives advice and then "
|
| 708 |
+
"contradicts it (e.g., 'switch immediately' and then 'always consult your doctor first'), "
|
| 709 |
+
"it is **Invalid** because it is unsafe and confusing."
|
| 710 |
+
)),
|
| 711 |
+
("human", "Query: {query}\nAnswer: {answer}")
|
| 712 |
+
])
|
| 713 |
+
self.islamic_prompt = ChatPromptTemplate.from_messages([
|
| 714 |
+
("system", (
|
| 715 |
+
"You are an answer validator for Islamic Fiqh or anything related to Islam. Check if the answer correctly addresses "
|
| 716 |
+
"the query based on the provided sources. The answer should be neutral and present "
|
| 717 |
+
"the required perspectives (e.g., Shafi'i and Maliki) if available. "
|
| 718 |
+
"Return 'Valid' if the answer is correct and relevant, or 'Invalid: [reason]' if not."
|
| 719 |
+
)),
|
| 720 |
+
("human", "Query: {query}\nAnswer: {answer}")
|
| 721 |
+
])
|
| 722 |
+
|
| 723 |
+
def validate(self, query, answer, source="RAG"):
|
| 724 |
+
if self.domain == "insurance":
|
| 725 |
+
logger.info("Skipping validation for insurance domain.")
|
| 726 |
+
return True, "Validation skipped for insurance domain."
|
| 727 |
+
|
| 728 |
+
try:
|
| 729 |
+
# --- 11. IMPROVED VALIDATOR LOGIC ---
|
| 730 |
+
# Choose the right prompt based on domain and source
|
| 731 |
+
prompt = self.general_prompt # Default
|
| 732 |
+
if source == "RAG" or "Database" in source:
|
| 733 |
+
if self.domain == "medical":
|
| 734 |
+
prompt = self.medical_prompt
|
| 735 |
+
elif self.domain == "islamic":
|
| 736 |
+
prompt = self.islamic_prompt
|
| 737 |
+
|
| 738 |
+
response = self.llm.invoke(prompt.format(query=query, answer=answer))
|
| 739 |
+
validation = response.content.strip()
|
| 740 |
+
logger.info(f"AnswerValidator result for query '{query}': {validation}")
|
| 741 |
+
|
| 742 |
+
if validation.lower().startswith("valid"):
|
| 743 |
+
return True, "Answer is valid and relevant."
|
| 744 |
+
elif validation.lower().startswith("invalid"):
|
| 745 |
+
reason = validation.split(":", 1)[1].strip() if ":" in validation else "No reason provided."
|
| 746 |
+
return False, reason
|
| 747 |
+
else:
|
| 748 |
+
return False, "Validation response format unexpected."
|
| 749 |
+
except Exception as e:
|
| 750 |
+
logger.error(f"AnswerValidator error: {str(e)}")
|
| 751 |
+
return False, "Validation failed due to error."
|
docker
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use Python 3.10 (Stable for LangChain & Flashrank)
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Set the working directory to /app
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies (needed for compiling packages like flashrank)
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
build-essential \
|
| 10 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
+
|
| 12 |
+
# Copy requirements first to cache dependencies
|
| 13 |
+
COPY requirements.txt .
|
| 14 |
+
|
| 15 |
+
# Install Python dependencies
|
| 16 |
+
# --no-cache-dir keeps the image size smaller
|
| 17 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 18 |
+
|
| 19 |
+
# Copy all your code (app_1.py, src/, templates/, api.py) into the container
|
| 20 |
+
COPY . .
|
| 21 |
+
|
| 22 |
+
# Create writable directories for the database and file uploads
|
| 23 |
+
# The 'chmod -R 777' gives the container permission to write here
|
| 24 |
+
RUN mkdir -p /app/chroma_db && chmod -R 777 /app/chroma_db
|
| 25 |
+
RUN mkdir -p /app/Uploads && chmod -R 777 /app/Uploads
|
| 26 |
+
|
| 27 |
+
# Tell Docker that the container will listen on port 7860
|
| 28 |
+
EXPOSE 7860
|
| 29 |
+
|
| 30 |
+
# --- The Command to Run Your App ---
|
| 31 |
+
# We use Gunicorn, a production-grade server
|
| 32 |
+
# It looks for the 'app_1.py' file and the 'app' object inside it
|
| 33 |
+
# --timeout 300 gives your RAG system 5 minutes to respond before timing out
|
| 34 |
+
CMD ["gunicorn", "-b", "0.0.0.0:7860", "app_1:app", "--timeout", "300"]
|
medical_swarm.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 4 |
+
import traceback
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
#1. SETUP
|
| 8 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
# Load env
|
| 12 |
+
load_dotenv()
|
| 13 |
+
google_api_key=os.getenv("GOOGLE_API_KEY")
|
| 14 |
+
if not google_api_key:
|
| 15 |
+
raise ValueError("GOOGLE_API_KEY not found in environment variable.Make sure it is in .env file")
|
| 16 |
+
|
| 17 |
+
# Agent Definition
|
| 18 |
+
NO_SUGGESTIONS_INSTRUCTION= (
|
| 19 |
+
"This is a finalized medical report.Do not provide suggestions or improvements."
|
| 20 |
+
"Focus strictly on your assigned task based on the provided data"
|
| 21 |
+
)
|
| 22 |
+
class MedicalAgent:
|
| 23 |
+
def __init__(self, llm, name:str, role_prompt: str):
|
| 24 |
+
self.llm = llm
|
| 25 |
+
self.name = name
|
| 26 |
+
self.role_prompt= role_prompt
|
| 27 |
+
|
| 28 |
+
def run(self, input_data:str):
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
logger.info(f"Agent '{self.name}' is processing")
|
| 32 |
+
full_prompt=f"{NO_SUGGESTIONS_INSTRUCTION}\n\n{self.role_prompt}\n\n{input_data}"
|
| 33 |
+
response=self.llm.invoke(full_prompt)
|
| 34 |
+
logger.info(f"Agent {self.name} finished")
|
| 35 |
+
return response.content
|
| 36 |
+
except Exception as e:
|
| 37 |
+
logger.error(f"Agent {self.name} error: {str(e)}")
|
| 38 |
+
traceback.print_exc()
|
| 39 |
+
return f"Error in agent {self.name}: {str(e)}"
|
| 40 |
+
|
| 41 |
+
# Initialize SWARM
|
| 42 |
+
llm=ChatGoogleGenerativeAI(model="gemini-2.5-pro",temperature=0.1,google_api_key=google_api_key)
|
| 43 |
+
|
| 44 |
+
#Define specific roles for each agent in the team
|
| 45 |
+
medical_data_extractor = MedicalAgent(
|
| 46 |
+
llm, "Medical Data Extractor",
|
| 47 |
+
"You are a specialized medical data extraction expert. Your role is to extract relevant medical information, focusing on key clinical indicators, test results, vital signs, and patient history from the provided text."
|
| 48 |
+
)
|
| 49 |
+
diagnostic_specialist = MedicalAgent(
|
| 50 |
+
llm, "Diagnostic Specialist",
|
| 51 |
+
"You are a senior diagnostic physician. Your role is to analyze the provided symptoms, lab results, and clinical findings to develop a diagnostic assessment based solely on the data."
|
| 52 |
+
)
|
| 53 |
+
treatment_planner = MedicalAgent(
|
| 54 |
+
llm, "Treatment Planner",
|
| 55 |
+
"You are an experienced clinical treatment specialist. Your role is to outline a prescribed treatment plan (pharmacological and non-pharmacological interventions) based on the provided diagnosis and data."
|
| 56 |
+
)
|
| 57 |
+
specialist_consultant = MedicalAgent(
|
| 58 |
+
llm, "Specialist Consultant",
|
| 59 |
+
"You are a medical specialist consultant. Your role is to provide deep insights on the existing diagnosis and treatment plan, highlighting any potential complications or considerations based on the record."
|
| 60 |
+
)
|
| 61 |
+
patient_care_coordinator = MedicalAgent(
|
| 62 |
+
llm, "Patient Care Coordinator (Orchestrator)",
|
| 63 |
+
"You are a patient care coordinator specializing in comprehensive healthcare management. Your primary role is to manage a team of specialist agents and synthesize their findings."
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# ORCHESTRATOR LOGIC
|
| 67 |
+
def run_medical_swarm(document_text: str, initial_query: str,chat_history: list = None):
|
| 68 |
+
"""
|
| 69 |
+
Orchestrates a swarm of medical agents to analyze document.
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
document_text: The full text of medical record
|
| 73 |
+
initial_query: The initial question or goal of analysis
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
A string containing final, synthesized response
|
| 77 |
+
"""
|
| 78 |
+
logger.info("--- MEDICAL SWARM INITIATED ---")
|
| 79 |
+
|
| 80 |
+
# If there's a history, use it as the starting point. Otherwise, start fresh.
|
| 81 |
+
workspace = [f"Initial Patient Document:\n{document_text}", f"Initial Goal: '{initial_query}'"]
|
| 82 |
+
|
| 83 |
+
# The Patient Care Coordinator is our orchestrator/manager
|
| 84 |
+
orchestrator= patient_care_coordinator
|
| 85 |
+
|
| 86 |
+
# Limit the number of collab rounds to prevent infinite loops
|
| 87 |
+
for i in range(5):
|
| 88 |
+
logger.info(f"\n-- Swarm Iteration {i+1} --")
|
| 89 |
+
current_state = "\n\n".join(workspace)
|
| 90 |
+
|
| 91 |
+
# The orchestrator reviews the current state and decide the next action.
|
| 92 |
+
orchestrator_prompt= f"""
|
| 93 |
+
You are the Patient Care Coordinator managing a team of specialist AI agents to analyze a medical case.
|
| 94 |
+
Review the current Case File below and decide the single next best action.
|
| 95 |
+
|
| 96 |
+
Your available specialists are:
|
| 97 |
+
- 'medical_data_extractor': Best for the first step to get raw data from the initial document.
|
| 98 |
+
- 'diagnostic_specialist': Best for forming a diagnosis after key data has been extracted.
|
| 99 |
+
- 'treatment_planner': Best for creating a plan after a clear diagnosis is available.
|
| 100 |
+
- 'specialist_consultant': Best for getting deeper insight on an existing diagnosis or plan.
|
| 101 |
+
|
| 102 |
+
Case File (Summary of work so far):
|
| 103 |
+
---
|
| 104 |
+
{current_state}
|
| 105 |
+
---
|
| 106 |
+
|
| 107 |
+
Based on the file, which specialist should be called next? Or, if you have a clear diagnosis, treatment plan, and specialist insight, is it time to write the final summary for the patient?
|
| 108 |
+
|
| 109 |
+
Respond with ONLY one of the following commands:
|
| 110 |
+
- "CALL: medical_data_extractor"
|
| 111 |
+
- "CALL: diagnostic_specialist"
|
| 112 |
+
- "CALL: treatment_planner"
|
| 113 |
+
- "CALL: specialist_consultant"
|
| 114 |
+
- "FINISH"
|
| 115 |
+
"""
|
| 116 |
+
command=orchestrator.run(orchestrator_prompt).strip().upper()
|
| 117 |
+
logger.info(f"Orchestrator Command: {command}")
|
| 118 |
+
|
| 119 |
+
if command == "CALL: MEDICAL_DATA_EXTRACTOR":
|
| 120 |
+
report= medical_data_extractor.run(f"Original Document:\n{document_text}")
|
| 121 |
+
workspace.append(f"--- Extractor's Report ---\n{report}")
|
| 122 |
+
|
| 123 |
+
elif command == "CALL: DIAGNOSTIC_SPECIALIST":
|
| 124 |
+
# Other agents get the whole workspace for context
|
| 125 |
+
report = diagnostic_specialist.run(f"Full Case File for Diagnosis:\n{current_state}")
|
| 126 |
+
workspace.append(f"--- Diagnostician's Report ---\n{report}")
|
| 127 |
+
|
| 128 |
+
elif command == "CALL: TREATMENT_PLANNER":
|
| 129 |
+
report = treatment_planner.run(f"Full Case File for Treatment Plan:\n{current_state}")
|
| 130 |
+
workspace.append(f"--- Treatment Planner's Report ---\n{report}")
|
| 131 |
+
|
| 132 |
+
elif command == "CALL: SPECIALIST_CONSULTANT":
|
| 133 |
+
report = specialist_consultant.run(f"Full Case File for Specialist Consultation:\n{current_state}")
|
| 134 |
+
workspace.append(f"--- Specialist Consultant's Report ---\n{report}")
|
| 135 |
+
|
| 136 |
+
elif command == "FINISH":
|
| 137 |
+
logger.info("Orchestrator has decided the work is complete. Generating final summary.")
|
| 138 |
+
final_summary_prompt = f"You are the Patient Care Coordinator. Based on the complete case file below, write a comprehensive, patient-facing summary that coordinates all the findings.\n\nFull Case File:\n{current_state}"
|
| 139 |
+
final_answer = orchestrator.run(final_summary_prompt)
|
| 140 |
+
return final_answer
|
| 141 |
+
else:
|
| 142 |
+
logger.warning(f"Orchestrator gave an unknown command: '{command}'. Ending swarm.")
|
| 143 |
+
break
|
| 144 |
+
|
| 145 |
+
# Fallback if the loop finishes without a "FINISH" command
|
| 146 |
+
logger.warning("Swarm reached max iterations. Finalizing with current data.")
|
| 147 |
+
final_fallback_prompt = f"You are the Patient Care Coordinator. The analysis time has expired. Summarize the findings from the case file below into a cohesive patient-facing report.\n\nFull Case File:\n{current_state}"
|
| 148 |
+
final_answer = orchestrator.run(final_fallback_prompt)
|
| 149 |
+
return final_answer
|
metrics_tracker.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
class MetricsTracker:
|
| 8 |
+
"""
|
| 9 |
+
Tracks system performance metrics across queries.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
def __init__(self, save_path="metrics_data.json"):
|
| 13 |
+
self.save_path = save_path
|
| 14 |
+
self.metrics = {
|
| 15 |
+
"total_queries": 0,
|
| 16 |
+
"rag_success": 0,
|
| 17 |
+
"web_search_fallback": 0,
|
| 18 |
+
"trusted_search_used": 0,
|
| 19 |
+
"general_search_used": 0,
|
| 20 |
+
"complexity_distribution": {
|
| 21 |
+
"simple": 0,
|
| 22 |
+
"moderate": 0,
|
| 23 |
+
"complex": 0
|
| 24 |
+
},
|
| 25 |
+
"domain_usage": {
|
| 26 |
+
"medical": 0,
|
| 27 |
+
"islamic": 0,
|
| 28 |
+
"insurance": 0
|
| 29 |
+
},
|
| 30 |
+
"response_times": [],
|
| 31 |
+
"worker_contributions": {
|
| 32 |
+
"dense_semantic": 0,
|
| 33 |
+
"bm25_keyword": 0
|
| 34 |
+
},
|
| 35 |
+
"validation_stats": {
|
| 36 |
+
"valid": 0,
|
| 37 |
+
"invalid": 0,
|
| 38 |
+
"skipped": 0
|
| 39 |
+
},
|
| 40 |
+
"query_history": [] # Store recent queries for analysis
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
# Load existing metrics if available
|
| 44 |
+
self.load_metrics()
|
| 45 |
+
|
| 46 |
+
def start_query(self):
|
| 47 |
+
"""Start timing a query."""
|
| 48 |
+
return time.time()
|
| 49 |
+
|
| 50 |
+
def end_query(self, start_time):
|
| 51 |
+
"""Calculate and store query response time."""
|
| 52 |
+
response_time = time.time() - start_time
|
| 53 |
+
self.metrics["response_times"].append(response_time)
|
| 54 |
+
return response_time
|
| 55 |
+
|
| 56 |
+
def log_query(self, query, domain, source, complexity=None,
|
| 57 |
+
validation=None, response_time=None, answer_preview=None):
|
| 58 |
+
"""
|
| 59 |
+
Log a complete query with all its metadata.
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
query (str): User's query
|
| 63 |
+
domain (str): Domain (medical, islamic, insurance)
|
| 64 |
+
source (str): Where answer came from (RAG, WebSearch, etc.)
|
| 65 |
+
complexity (dict): Complexity analysis result
|
| 66 |
+
validation (tuple): (is_valid, reason)
|
| 67 |
+
response_time (float): Time taken in seconds
|
| 68 |
+
answer_preview (str): First 100 chars of answer
|
| 69 |
+
"""
|
| 70 |
+
self.metrics["total_queries"] += 1
|
| 71 |
+
|
| 72 |
+
# Track domain usage
|
| 73 |
+
if domain in self.metrics["domain_usage"]:
|
| 74 |
+
self.metrics["domain_usage"][domain] += 1
|
| 75 |
+
|
| 76 |
+
# Track source usage
|
| 77 |
+
if "RAG" in source or "Database" in source:
|
| 78 |
+
self.metrics["rag_success"] += 1
|
| 79 |
+
elif "Trusted" in source:
|
| 80 |
+
self.metrics["trusted_search_used"] += 1
|
| 81 |
+
self.metrics["web_search_fallback"] += 1
|
| 82 |
+
elif "Etiqa" in source:
|
| 83 |
+
self.metrics["web_search_fallback"] += 1
|
| 84 |
+
elif "Web" in source or "Search" in source:
|
| 85 |
+
self.metrics["general_search_used"] += 1
|
| 86 |
+
self.metrics["web_search_fallback"] += 1
|
| 87 |
+
|
| 88 |
+
# Track complexity distribution
|
| 89 |
+
if complexity and "complexity" in complexity:
|
| 90 |
+
comp_level = complexity["complexity"]
|
| 91 |
+
if comp_level in self.metrics["complexity_distribution"]:
|
| 92 |
+
self.metrics["complexity_distribution"][comp_level] += 1
|
| 93 |
+
|
| 94 |
+
# Track validation
|
| 95 |
+
if validation:
|
| 96 |
+
is_valid, reason = validation
|
| 97 |
+
if "skip" in reason.lower():
|
| 98 |
+
self.metrics["validation_stats"]["skipped"] += 1
|
| 99 |
+
elif is_valid:
|
| 100 |
+
self.metrics["validation_stats"]["valid"] += 1
|
| 101 |
+
else:
|
| 102 |
+
self.metrics["validation_stats"]["invalid"] += 1
|
| 103 |
+
|
| 104 |
+
# Store query history (last 50 queries)
|
| 105 |
+
query_record = {
|
| 106 |
+
"timestamp": datetime.now().isoformat(),
|
| 107 |
+
"query": query[:100], # Truncate long queries
|
| 108 |
+
"domain": domain,
|
| 109 |
+
"source": source,
|
| 110 |
+
"complexity": complexity.get("complexity") if complexity else None,
|
| 111 |
+
"k_used": complexity.get("k") if complexity else None,
|
| 112 |
+
"response_time": round(response_time, 2) if response_time else None,
|
| 113 |
+
"validated": is_valid if validation else None,
|
| 114 |
+
"answer_preview": answer_preview[:100] if answer_preview else None
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
self.metrics["query_history"].append(query_record)
|
| 118 |
+
|
| 119 |
+
# Keep only last 50 queries
|
| 120 |
+
if len(self.metrics["query_history"]) > 50:
|
| 121 |
+
self.metrics["query_history"] = self.metrics["query_history"][-50:]
|
| 122 |
+
|
| 123 |
+
# Auto-save after each query
|
| 124 |
+
self.save_metrics()
|
| 125 |
+
|
| 126 |
+
def log_worker_contribution(self, worker_stats):
|
| 127 |
+
"""
|
| 128 |
+
Log which swarm workers contributed to the final answer.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
worker_stats (dict): e.g., {"dense_semantic": 5, "bm25_keyword": 3}
|
| 132 |
+
"""
|
| 133 |
+
for worker, count in worker_stats.items():
|
| 134 |
+
if worker in self.metrics["worker_contributions"]:
|
| 135 |
+
self.metrics["worker_contributions"][worker] += count
|
| 136 |
+
|
| 137 |
+
def get_stats(self):
|
| 138 |
+
"""Get current statistics."""
|
| 139 |
+
total = self.metrics["total_queries"]
|
| 140 |
+
|
| 141 |
+
if total == 0:
|
| 142 |
+
return {
|
| 143 |
+
"total_queries": 0,
|
| 144 |
+
"rag_success_rate": 0,
|
| 145 |
+
"web_search_rate": 0,
|
| 146 |
+
"avg_response_time": 0,
|
| 147 |
+
"complexity_distribution": self.metrics["complexity_distribution"],
|
| 148 |
+
"domain_usage": self.metrics["domain_usage"]
|
| 149 |
+
}
|
| 150 |
+
|
| 151 |
+
# Calculate averages and percentages
|
| 152 |
+
avg_response_time = (
|
| 153 |
+
sum(self.metrics["response_times"]) / len(self.metrics["response_times"])
|
| 154 |
+
if self.metrics["response_times"] else 0
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
stats = {
|
| 158 |
+
"total_queries": total,
|
| 159 |
+
"rag_success_rate": round((self.metrics["rag_success"] / total) * 100, 1),
|
| 160 |
+
"web_search_rate": round((self.metrics["web_search_fallback"] / total) * 100, 1),
|
| 161 |
+
"trusted_search_rate": round((self.metrics["trusted_search_used"] / total) * 100, 1),
|
| 162 |
+
"general_search_rate": round((self.metrics["general_search_used"] / total) * 100, 1),
|
| 163 |
+
"avg_response_time": round(avg_response_time, 2),
|
| 164 |
+
"median_response_time": self._get_median(self.metrics["response_times"]),
|
| 165 |
+
"complexity_distribution": self.metrics["complexity_distribution"],
|
| 166 |
+
"domain_usage": self.metrics["domain_usage"],
|
| 167 |
+
"worker_contributions": self.metrics["worker_contributions"],
|
| 168 |
+
"validation_stats": self.metrics["validation_stats"],
|
| 169 |
+
"recent_queries": self.metrics["query_history"][-10:] # Last 10 queries
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
return stats
|
| 173 |
+
|
| 174 |
+
def _get_median(self, values):
|
| 175 |
+
"""Calculate median of a list."""
|
| 176 |
+
if not values:
|
| 177 |
+
return 0
|
| 178 |
+
sorted_values = sorted(values)
|
| 179 |
+
n = len(sorted_values)
|
| 180 |
+
mid = n // 2
|
| 181 |
+
if n % 2 == 0:
|
| 182 |
+
return round((sorted_values[mid-1] + sorted_values[mid]) / 2, 2)
|
| 183 |
+
return round(sorted_values[mid], 2)
|
| 184 |
+
|
| 185 |
+
def save_metrics(self):
|
| 186 |
+
"""Save metrics to JSON file."""
|
| 187 |
+
try:
|
| 188 |
+
with open(self.save_path, 'w') as f:
|
| 189 |
+
json.dump(self.metrics, f, indent=2)
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"Warning: Could not save metrics: {e}")
|
| 192 |
+
|
| 193 |
+
def load_metrics(self):
|
| 194 |
+
"""Load metrics from JSON file if it exists."""
|
| 195 |
+
if os.path.exists(self.save_path):
|
| 196 |
+
try:
|
| 197 |
+
with open(self.save_path, 'r') as f:
|
| 198 |
+
self.metrics = json.load(f)
|
| 199 |
+
print(f"✅ Loaded existing metrics from {self.save_path}")
|
| 200 |
+
except Exception as e:
|
| 201 |
+
print(f"Warning: Could not load metrics: {e}")
|
| 202 |
+
|
| 203 |
+
def reset_metrics(self):
|
| 204 |
+
"""Reset all metrics (useful for testing)."""
|
| 205 |
+
self.__init__(self.save_path)
|
| 206 |
+
self.save_metrics()
|