Spaces:
Sleeping
Sleeping
| from flask import Flask, render_template, request, redirect, url_for | |
| from flask_socketio import SocketIO | |
| import os | |
| from dotenv import load_dotenv | |
| from werkzeug.utils import secure_filename | |
| # LangChain and agent imports | |
| from typing import Annotated, Literal | |
| from langchain_core.messages import AIMessage, ToolMessage | |
| from pydantic import BaseModel, Field | |
| from typing_extensions import TypedDict | |
| from langgraph.graph import END, START, StateGraph | |
| from langgraph.graph.message import AnyMessage, add_messages | |
| from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks | |
| from langgraph.prebuilt import ToolNode | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain_community.utilities import SQLDatabase | |
| from langchain_community.agent_toolkits import SQLDatabaseToolkit | |
| from langchain_core.tools import tool | |
| import traceback | |
| # Load environment variables | |
| load_dotenv() | |
| # Global configuration variables | |
| UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads") | |
| os.makedirs(UPLOAD_FOLDER, exist_ok=True) | |
| BASE_DIR = os.path.abspath(os.path.dirname(__file__)) | |
| # API Keys from .env file | |
| os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY") | |
| os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY") | |
| # Flask and SocketIO setup | |
| flask_app = Flask(__name__) | |
| flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
| socketio = SocketIO(flask_app, cors_allowed_origins="*") | |
| # Global state | |
| agent_app = None | |
| abs_file_path = None | |
| def create_agent_app(db_path: str): | |
| from langchain_groq import ChatGroq | |
| llm = ChatGroq(model="llama3-70b-8192") | |
| abs_db_path = os.path.abspath(db_path) | |
| db_instance = SQLDatabase.from_uri(f"sqlite:///{abs_db_path}") | |
| def db_query_tool(query: str) -> str: | |
| result = db_instance.run_no_throw(query) | |
| return result or "Error: Query failed. Please rewrite your query and try again." | |
| class SubmitFinalAnswer(BaseModel): | |
| final_answer: str = Field(...) | |
| class State(TypedDict): | |
| messages: Annotated[list[AnyMessage], add_messages] | |
| query_check = ChatPromptTemplate.from_messages([ | |
| ("system", "You are a SQL expert. Fix common issues in SQLite queries."), | |
| ("placeholder", "{messages}") | |
| ]) | llm.bind_tools([db_query_tool]) | |
| query_gen = ChatPromptTemplate.from_messages([ | |
| ("system", "You are a SQL expert. Generate SQLite query and return answer using SubmitFinalAnswer tool."), | |
| ("placeholder", "{messages}") | |
| ]) | llm.bind_tools([SubmitFinalAnswer]) | |
| toolkit = SQLDatabaseToolkit(db=db_instance, llm=llm) | |
| tools_instance = toolkit.get_tools() | |
| def first_tool_call(state: State): | |
| return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]} | |
| def handle_tool_error(state: State): | |
| tool_calls = state["messages"][-1].tool_calls | |
| return {"messages": [ | |
| ToolMessage(content="Error occurred. Please revise.", tool_call_id=tc["id"]) for tc in tool_calls | |
| ]} | |
| def create_tool_node_with_fallback(tools_list): | |
| return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error") | |
| def query_gen_node(state: State): | |
| message = query_gen.invoke(state) | |
| tool_messages = [] | |
| if message.tool_calls: | |
| for tc in message.tool_calls: | |
| if tc["name"] != "SubmitFinalAnswer": | |
| tool_messages.append(ToolMessage( | |
| content=f"Error: Wrong tool called: {tc['name']}", | |
| tool_call_id=tc["id"] | |
| )) | |
| return {"messages": [message] + tool_messages} | |
| def should_continue(state: State): | |
| last_message = state["messages"][-1] | |
| if getattr(last_message, "tool_calls", None): | |
| return END | |
| if last_message.content.startswith("Error:"): | |
| return "query_gen" | |
| return "correct_query" | |
| def model_check_query(state: State): | |
| return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]} | |
| list_tool = next((t for t in tools_instance if t.name == "sql_db_list_tables"), None) | |
| schema_tool = next((t for t in tools_instance if t.name == "sql_db_schema"), None) | |
| model_get_schema = llm.bind_tools([schema_tool]) | |
| workflow = StateGraph(State) | |
| workflow.add_node("first_tool_call", first_tool_call) | |
| workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tool])) | |
| workflow.add_node("get_schema_tool", create_tool_node_with_fallback([schema_tool])) | |
| workflow.add_node("model_get_schema", lambda s: {"messages": [model_get_schema.invoke(s["messages\])]}) | |
| workflow.add_node("query_gen", query_gen_node) | |
| workflow.add_node("correct_query", model_check_query) | |
| workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool])) | |
| workflow.add_edge(START, "first_tool_call") | |
| workflow.add_edge("first_tool_call", "list_tables_tool") | |
| workflow.add_edge("list_tables_tool", "model_get_schema") | |
| workflow.add_edge("model_get_schema", "get_schema_tool") | |
| workflow.add_edge("get_schema_tool", "query_gen") | |
| workflow.add_conditional_edges("query_gen", should_continue) | |
| workflow.add_edge("correct_query", "execute_query") | |
| workflow.add_edge("execute_query", "query_gen") | |
| return workflow.compile() | |
| @flask_app.route("/", methods=["GET"]) | |
| def index(): | |
| return render_template("index.html") | |
| @flask_app.route("/upload", methods=["GET", "POST"]) | |
| def upload(): | |
| global abs_file_path, agent_app | |
| try: | |
| if request.method == "POST": | |
| file = request.files.get("file") | |
| if not file: | |
| return "No file uploaded", 400 | |
| filename = secure_filename(file.filename) | |
| if filename.endswith('.db'): | |
| save_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db") | |
| file.save(save_path) | |
| abs_file_path = os.path.abspath(save_path) | |
| agent_app = None | |
| socketio.emit("log", {"message": f"Database '{filename}' uploaded."}) | |
| return redirect(url_for("index")) | |
| return render_template("upload.html") | |
| except Exception as e: | |
| socketio.emit("log", {"message": f"[ERROR]: {str(e)}"}) | |
| return render_template("upload.html") | |
| @socketio.on("user_input") | |
| def handle_user_input(data): | |
| prompt = data.get("message") | |
| if not prompt: | |
| socketio.emit("log", {"message": "[ERROR]: Empty prompt."}) | |
| return | |
| run_agent(prompt) | |
| def run_agent(prompt): | |
| global agent_app, abs_file_path | |
| if not abs_file_path: | |
| socketio.emit("final", {"message": "No DB uploaded."}) | |
| return | |
| try: | |
| if agent_app is None: | |
| agent_app = create_agent_app(abs_file_path) | |
| socketio.emit("log", {"message": "[INFO]: Agent initialized."}) | |
| query = {"messages": [("user", prompt)]} | |
| result = agent_app.invoke(query) | |
| try: | |
| result = result["messages"][-1].tool_calls[0]["args"]["final_answer"] | |
| except Exception: | |
| result = "Query failed or no valid answer found." | |
| socketio.emit("final", {"message": result}) | |
| except Exception as e: | |
| socketio.emit("log", {"message": f"[ERROR]: {str(e)}"}) | |
| socketio.emit("final", {"message": "Generation failed."}) | |
| app = flask_app | |
| if __name__ == "__main__": | |
| socketio.run(app, debug=True) |