Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,185 +1,86 @@
|
|
| 1 |
-
from flask import Flask, render_template, request, redirect, url_for
|
| 2 |
from flask_socketio import SocketIO
|
| 3 |
-
import threading
|
| 4 |
import os
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
-
import sqlite3
|
| 7 |
from werkzeug.utils import secure_filename
|
| 8 |
|
| 9 |
# LangChain and agent imports
|
| 10 |
-
from
|
| 11 |
-
from langchain.agents import Tool
|
| 12 |
-
from langchain.agents.format_scratchpad import format_log_to_str
|
| 13 |
-
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
|
| 14 |
-
from langchain_core.callbacks import CallbackManager, BaseCallbackHandler
|
| 15 |
-
from langchain_community.agent_toolkits.load_tools import load_tools
|
| 16 |
-
from langchain_core.tools import tool
|
| 17 |
-
from langchain_community.agent_toolkits import PowerBIToolkit
|
| 18 |
-
from langchain.chains import LLMMathChain
|
| 19 |
-
from langchain import hub
|
| 20 |
-
from langchain_community.tools import DuckDuckGoSearchRun
|
| 21 |
-
|
| 22 |
-
# Agent requirements and type hints
|
| 23 |
-
from typing import Annotated, Literal, TypedDict, Any
|
| 24 |
from langchain_core.messages import AIMessage, ToolMessage
|
| 25 |
from pydantic import BaseModel, Field
|
| 26 |
from typing_extensions import TypedDict
|
| 27 |
-
from langgraph.graph import END,
|
| 28 |
from langgraph.graph.message import AnyMessage, add_messages
|
| 29 |
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
|
| 30 |
from langgraph.prebuilt import ToolNode
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
import traceback
|
| 33 |
|
| 34 |
# Load environment variables
|
| 35 |
load_dotenv()
|
| 36 |
|
| 37 |
-
|
| 38 |
# Global configuration variables
|
| 39 |
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
|
|
|
|
| 40 |
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
|
| 41 |
-
DATABASE_URI = f"sqlite:///{os.path.join(BASE_DIR, 'data', 'mydb.db')}"
|
| 42 |
-
print("DATABASE URI:", DATABASE_URI)
|
| 43 |
|
| 44 |
# API Keys from .env file
|
| 45 |
-
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 46 |
-
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
|
| 47 |
-
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
| 48 |
-
os.environ["MISTRAL_API_KEY"] = MISTRAL_API_KEY
|
| 49 |
|
| 50 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
agent_app = None
|
| 52 |
abs_file_path = None
|
| 53 |
-
db_path = None
|
| 54 |
-
|
| 55 |
-
print(traceback.format_exc())
|
| 56 |
-
|
| 57 |
-
# =============================================================================
|
| 58 |
-
# create_agent_app: Given a database path, initialize the agent workflow.
|
| 59 |
-
# =============================================================================
|
| 60 |
|
| 61 |
def create_agent_app(db_path: str):
|
| 62 |
-
# Use ChatGroq as our LLM here; you can swap to ChatMistralAI if preferred.
|
| 63 |
from langchain_groq import ChatGroq
|
| 64 |
llm = ChatGroq(model="llama3-70b-8192")
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
@tool
|
| 70 |
def db_query_tool(query: str) -> str:
|
| 71 |
-
"""
|
| 72 |
-
Executes a SQL query on the connected SQLite database.
|
| 73 |
-
|
| 74 |
-
Parameters:
|
| 75 |
-
query (str): A SQL query string to be executed.
|
| 76 |
-
|
| 77 |
-
Returns:
|
| 78 |
-
str: The result from the database if successful, or an error message if not.
|
| 79 |
-
"""
|
| 80 |
result = db_instance.run_no_throw(query)
|
| 81 |
-
return result
|
| 82 |
|
| 83 |
-
# -------------------------------------------------------------------------
|
| 84 |
-
# Pydantic model for final answer
|
| 85 |
-
# -------------------------------------------------------------------------
|
| 86 |
class SubmitFinalAnswer(BaseModel):
|
| 87 |
-
final_answer: str = Field(
|
| 88 |
|
| 89 |
-
# -------------------------------------------------------------------------
|
| 90 |
-
# Define state type for our workflow.
|
| 91 |
-
# -------------------------------------------------------------------------
|
| 92 |
class State(TypedDict):
|
| 93 |
messages: Annotated[list[AnyMessage], add_messages]
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
# and query generation.
|
| 98 |
-
# -------------------------------------------------------------------------
|
| 99 |
-
from langchain_core.prompts import ChatPromptTemplate
|
| 100 |
-
|
| 101 |
-
query_check_system = (
|
| 102 |
-
"You are a SQL expert with a strong attention to detail.\n"
|
| 103 |
-
"Double check the SQLite query for common mistakes, including:\n"
|
| 104 |
-
"- Using NOT IN with NULL values\n"
|
| 105 |
-
"- Using UNION when UNION ALL should have been used\n"
|
| 106 |
-
"- Using BETWEEN for exclusive ranges\n"
|
| 107 |
-
"- Data type mismatch in predicates\n"
|
| 108 |
-
"- Properly quoting identifiers\n"
|
| 109 |
-
"- Using the correct number of arguments for functions\n"
|
| 110 |
-
"- Casting to the correct data type\n"
|
| 111 |
-
"- Using the proper columns for joins\n\n"
|
| 112 |
-
"If there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n"
|
| 113 |
-
"You will call the appropriate tool to execute the query after running this check."
|
| 114 |
-
)
|
| 115 |
-
query_check_prompt = ChatPromptTemplate.from_messages([
|
| 116 |
-
("system", query_check_system),
|
| 117 |
("placeholder", "{messages}")
|
| 118 |
-
])
|
| 119 |
-
query_check = query_check_prompt | llm.bind_tools([db_query_tool])
|
| 120 |
|
| 121 |
-
|
| 122 |
-
"You are a SQL expert
|
| 123 |
-
"Given an input question, output a syntactically correct SQLite query to run, then look at the results of the query and return the answer.\n\n"
|
| 124 |
-
"DO NOT call any tool besides SubmitFinalAnswer to submit the final answer.\n\n"
|
| 125 |
-
"When generating the query:\n"
|
| 126 |
-
"Output the SQL query that answers the input question without a tool call.\n"
|
| 127 |
-
"Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.\n"
|
| 128 |
-
"You can order the results by a relevant column to return the most interesting examples in the database.\n"
|
| 129 |
-
"Never query for all the columns from a specific table, only ask for the relevant columns given the question.\n\n"
|
| 130 |
-
"If you get an error while executing a query, rewrite the query and try again.\n"
|
| 131 |
-
"If you get an empty result set, you should try to rewrite the query to get a non-empty result set.\n"
|
| 132 |
-
"NEVER make stuff up if you don't have enough information to answer the query... just say you don't have enough information.\n\n"
|
| 133 |
-
"If you have enough information to answer the input question, simply invoke the appropriate tool to submit the final answer to the user.\n"
|
| 134 |
-
"DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. Do not return any SQL query except answer."
|
| 135 |
-
)
|
| 136 |
-
query_gen_prompt = ChatPromptTemplate.from_messages([
|
| 137 |
-
("system", query_gen_system),
|
| 138 |
("placeholder", "{messages}")
|
| 139 |
-
])
|
| 140 |
-
query_gen = query_gen_prompt | llm.bind_tools([SubmitFinalAnswer])
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
# -------------------------------------------------------------------------
|
| 145 |
-
|
| 146 |
-
abs_db_path_local = os.path.abspath(db_path)
|
| 147 |
-
global DATABASE_URI
|
| 148 |
-
DATABASE_URI = abs_db_path_local
|
| 149 |
-
db_uri = f"sqlite:///{abs_db_path_local}"
|
| 150 |
-
print("db_uri", db_uri)
|
| 151 |
-
# Uncomment if flash is needed; ensure you have flask.flash imported if so.
|
| 152 |
-
# flash(f"db_uri:{db_uri}", "warning")
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
print("db_instance----->", db_instance)
|
| 157 |
-
# flash(f"db_instance:{db_instance}", "warning")
|
| 158 |
|
| 159 |
-
|
| 160 |
-
# Create SQL toolkit.
|
| 161 |
-
# -------------------------------------------------------------------------
|
| 162 |
-
|
| 163 |
-
from langchain_community.agent_toolkits import SQLDatabaseToolkit
|
| 164 |
-
toolkit_instance = SQLDatabaseToolkit(db=db_instance, llm=llm)
|
| 165 |
-
tools_instance = toolkit_instance.get_tools()
|
| 166 |
-
|
| 167 |
-
# -------------------------------------------------------------------------
|
| 168 |
-
# Define workflow nodes and fallback functions.
|
| 169 |
-
# -------------------------------------------------------------------------
|
| 170 |
-
|
| 171 |
-
def first_tool_call(state: State) -> dict[str, list[AIMessage]]:
|
| 172 |
-
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
|
| 173 |
-
|
| 174 |
-
def handle_tool_error(state: State) -> dict:
|
| 175 |
-
error = state.get("error")
|
| 176 |
tool_calls = state["messages"][-1].tool_calls
|
| 177 |
return {"messages": [
|
| 178 |
-
ToolMessage(content=
|
| 179 |
-
for tc in tool_calls
|
| 180 |
]}
|
| 181 |
|
| 182 |
-
def create_tool_node_with_fallback(tools_list
|
| 183 |
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
|
| 184 |
|
| 185 |
def query_gen_node(state: State):
|
|
@@ -189,36 +90,31 @@ def create_agent_app(db_path: str):
|
|
| 189 |
for tc in message.tool_calls:
|
| 190 |
if tc["name"] != "SubmitFinalAnswer":
|
| 191 |
tool_messages.append(ToolMessage(
|
| 192 |
-
content=f"Error:
|
| 193 |
tool_call_id=tc["id"]
|
| 194 |
))
|
| 195 |
return {"messages": [message] + tool_messages}
|
| 196 |
|
| 197 |
-
def should_continue(state: State)
|
| 198 |
-
|
| 199 |
-
last_message = messages[-1]
|
| 200 |
if getattr(last_message, "tool_calls", None):
|
| 201 |
return END
|
| 202 |
if last_message.content.startswith("Error:"):
|
| 203 |
return "query_gen"
|
| 204 |
return "correct_query"
|
| 205 |
|
| 206 |
-
def model_check_query(state: State)
|
| 207 |
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
list_tables_tool = next((tool for tool in tools_instance if tool.name == "sql_db_list_tables"), None)
|
| 214 |
-
get_schema_tool = next((tool for tool in tools_instance if tool.name == "sql_db_schema"), None)
|
| 215 |
|
| 216 |
workflow = StateGraph(State)
|
| 217 |
workflow.add_node("first_tool_call", first_tool_call)
|
| 218 |
-
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([
|
| 219 |
-
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([
|
| 220 |
-
model_get_schema
|
| 221 |
-
workflow.add_node("model_get_schema", lambda state: {"messages": [model_get_schema.invoke(state["messages"])],})
|
| 222 |
workflow.add_node("query_gen", query_gen_node)
|
| 223 |
workflow.add_node("correct_query", model_check_query)
|
| 224 |
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
|
|
@@ -232,37 +128,15 @@ def create_agent_app(db_path: str):
|
|
| 232 |
workflow.add_edge("correct_query", "execute_query")
|
| 233 |
workflow.add_edge("execute_query", "query_gen")
|
| 234 |
|
| 235 |
-
# Return compiled workflow
|
| 236 |
return workflow.compile()
|
| 237 |
|
| 238 |
-
|
| 239 |
-
# =============================================================================
|
| 240 |
-
# create_app: The application factory.
|
| 241 |
-
# =============================================================================
|
| 242 |
-
|
| 243 |
-
# Flask and SocketIO setup
|
| 244 |
-
flask_app = Flask(__name__)
|
| 245 |
-
flask_app.config['UPLOAD_FOLDER'] = "uploaded_files"
|
| 246 |
-
os.makedirs(flask_app.config['UPLOAD_FOLDER'], exist_ok=True)
|
| 247 |
-
|
| 248 |
-
socketio = SocketIO(flask_app, cors_allowed_origins="*")
|
| 249 |
-
|
| 250 |
-
# Global variables to manage state
|
| 251 |
-
agent_app = None
|
| 252 |
-
db_path = None
|
| 253 |
-
abs_file_path = None
|
| 254 |
-
|
| 255 |
-
# ----------------------------
|
| 256 |
-
# ROUTES
|
| 257 |
-
# ----------------------------
|
| 258 |
-
|
| 259 |
@flask_app.route("/", methods=["GET"])
|
| 260 |
def index():
|
| 261 |
return render_template("index.html")
|
| 262 |
|
| 263 |
@flask_app.route("/upload", methods=["GET", "POST"])
|
| 264 |
def upload():
|
| 265 |
-
global abs_file_path,
|
| 266 |
try:
|
| 267 |
if request.method == "POST":
|
| 268 |
file = request.files.get("file")
|
|
@@ -271,69 +145,45 @@ def upload():
|
|
| 271 |
|
| 272 |
filename = secure_filename(file.filename)
|
| 273 |
if filename.endswith('.db'):
|
| 274 |
-
|
| 275 |
-
file.save(
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
print(f"[INFO]: File '{filename}' uploaded. Agent will be initialized on first query.")
|
| 281 |
-
socketio.emit("log", {"message": f"[INFO]: Database file '{filename}' uploaded."})
|
| 282 |
-
|
| 283 |
return redirect(url_for("index"))
|
| 284 |
return render_template("upload.html")
|
| 285 |
except Exception as e:
|
| 286 |
-
print(f"[ERROR]: {str(e)}")
|
| 287 |
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
|
| 288 |
return render_template("upload.html")
|
| 289 |
|
| 290 |
-
|
| 291 |
-
# ----------------------------
|
| 292 |
-
# AGENT INVOCATION
|
| 293 |
-
# ----------------------------
|
| 294 |
-
|
| 295 |
@socketio.on("user_input")
|
| 296 |
def handle_user_input(data):
|
| 297 |
prompt = data.get("message")
|
| 298 |
if not prompt:
|
| 299 |
-
socketio.emit("log", {"message": "[ERROR]: Empty prompt
|
| 300 |
return
|
| 301 |
-
|
| 302 |
run_agent(prompt)
|
| 303 |
|
| 304 |
-
|
| 305 |
def run_agent(prompt):
|
| 306 |
global agent_app, abs_file_path
|
| 307 |
if not abs_file_path:
|
| 308 |
-
socketio.emit("
|
| 309 |
-
socketio.emit("final", {"message": "No database available. Please upload one and try again."})
|
| 310 |
return
|
| 311 |
-
|
| 312 |
try:
|
| 313 |
if agent_app is None:
|
| 314 |
-
print("[INFO]: Initializing agent for the first time...")
|
| 315 |
agent_app = create_agent_app(abs_file_path)
|
| 316 |
socketio.emit("log", {"message": "[INFO]: Agent initialized."})
|
| 317 |
|
| 318 |
query = {"messages": [("user", prompt)]}
|
| 319 |
result = agent_app.invoke(query)
|
| 320 |
-
|
| 321 |
try:
|
| 322 |
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
|
| 323 |
except Exception:
|
| 324 |
result = "Query failed or no valid answer found."
|
| 325 |
-
|
| 326 |
-
print("final_answer------>", result)
|
| 327 |
socketio.emit("final", {"message": result})
|
| 328 |
except Exception as e:
|
| 329 |
-
print(f"[ERROR]: {str(e)}")
|
| 330 |
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
|
| 331 |
socketio.emit("final", {"message": "Generation failed."})
|
| 332 |
|
| 333 |
-
|
| 334 |
-
# ----------------------------
|
| 335 |
-
# MAIN
|
| 336 |
-
# ----------------------------
|
| 337 |
-
|
| 338 |
if __name__ == "__main__":
|
| 339 |
-
socketio.run(flask_app, debug=True)
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, redirect, url_for
|
| 2 |
from flask_socketio import SocketIO
|
|
|
|
| 3 |
import os
|
| 4 |
from dotenv import load_dotenv
|
|
|
|
| 5 |
from werkzeug.utils import secure_filename
|
| 6 |
|
| 7 |
# LangChain and agent imports
|
| 8 |
+
from typing import Annotated, Literal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from langchain_core.messages import AIMessage, ToolMessage
|
| 10 |
from pydantic import BaseModel, Field
|
| 11 |
from typing_extensions import TypedDict
|
| 12 |
+
from langgraph.graph import END, START, StateGraph
|
| 13 |
from langgraph.graph.message import AnyMessage, add_messages
|
| 14 |
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
|
| 15 |
from langgraph.prebuilt import ToolNode
|
| 16 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 17 |
+
from langchain_community.utilities import SQLDatabase
|
| 18 |
+
from langchain_community.agent_toolkits import SQLDatabaseToolkit
|
| 19 |
+
from langchain_core.tools import tool
|
| 20 |
import traceback
|
| 21 |
|
| 22 |
# Load environment variables
|
| 23 |
load_dotenv()
|
| 24 |
|
|
|
|
| 25 |
# Global configuration variables
|
| 26 |
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
|
| 27 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 28 |
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# API Keys from .env file
|
| 31 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
| 32 |
+
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY")
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Flask and SocketIO setup
|
| 35 |
+
flask_app = Flask(__name__)
|
| 36 |
+
flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 37 |
+
socketio = SocketIO(flask_app, cors_allowed_origins="*")
|
| 38 |
+
|
| 39 |
+
# Global state
|
| 40 |
agent_app = None
|
| 41 |
abs_file_path = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def create_agent_app(db_path: str):
|
|
|
|
| 44 |
from langchain_groq import ChatGroq
|
| 45 |
llm = ChatGroq(model="llama3-70b-8192")
|
| 46 |
|
| 47 |
+
abs_db_path = os.path.abspath(db_path)
|
| 48 |
+
db_instance = SQLDatabase.from_uri(f"sqlite:///{abs_db_path}")
|
| 49 |
+
|
| 50 |
@tool
|
| 51 |
def db_query_tool(query: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
result = db_instance.run_no_throw(query)
|
| 53 |
+
return result or "Error: Query failed. Please rewrite your query and try again."
|
| 54 |
|
|
|
|
|
|
|
|
|
|
| 55 |
class SubmitFinalAnswer(BaseModel):
|
| 56 |
+
final_answer: str = Field(...)
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
class State(TypedDict):
|
| 59 |
messages: Annotated[list[AnyMessage], add_messages]
|
| 60 |
|
| 61 |
+
query_check = ChatPromptTemplate.from_messages([
|
| 62 |
+
("system", "You are a SQL expert. Fix common issues in SQLite queries."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
("placeholder", "{messages}")
|
| 64 |
+
]) | llm.bind_tools([db_query_tool])
|
|
|
|
| 65 |
|
| 66 |
+
query_gen = ChatPromptTemplate.from_messages([
|
| 67 |
+
("system", "You are a SQL expert. Generate SQLite query and return answer using SubmitFinalAnswer tool."),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
("placeholder", "{messages}")
|
| 69 |
+
]) | llm.bind_tools([SubmitFinalAnswer])
|
|
|
|
| 70 |
|
| 71 |
+
toolkit = SQLDatabaseToolkit(db=db_instance, llm=llm)
|
| 72 |
+
tools_instance = toolkit.get_tools()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
def first_tool_call(state: State):
|
| 75 |
+
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
def handle_tool_error(state: State):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
tool_calls = state["messages"][-1].tool_calls
|
| 79 |
return {"messages": [
|
| 80 |
+
ToolMessage(content="Error occurred. Please revise.", tool_call_id=tc["id"]) for tc in tool_calls
|
|
|
|
| 81 |
]}
|
| 82 |
|
| 83 |
+
def create_tool_node_with_fallback(tools_list):
|
| 84 |
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
|
| 85 |
|
| 86 |
def query_gen_node(state: State):
|
|
|
|
| 90 |
for tc in message.tool_calls:
|
| 91 |
if tc["name"] != "SubmitFinalAnswer":
|
| 92 |
tool_messages.append(ToolMessage(
|
| 93 |
+
content=f"Error: Wrong tool called: {tc['name']}",
|
| 94 |
tool_call_id=tc["id"]
|
| 95 |
))
|
| 96 |
return {"messages": [message] + tool_messages}
|
| 97 |
|
| 98 |
+
def should_continue(state: State):
|
| 99 |
+
last_message = state["messages"][-1]
|
|
|
|
| 100 |
if getattr(last_message, "tool_calls", None):
|
| 101 |
return END
|
| 102 |
if last_message.content.startswith("Error:"):
|
| 103 |
return "query_gen"
|
| 104 |
return "correct_query"
|
| 105 |
|
| 106 |
+
def model_check_query(state: State):
|
| 107 |
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
|
| 108 |
|
| 109 |
+
list_tool = next((t for t in tools_instance if t.name == "sql_db_list_tables"), None)
|
| 110 |
+
schema_tool = next((t for t in tools_instance if t.name == "sql_db_schema"), None)
|
| 111 |
+
model_get_schema = llm.bind_tools([schema_tool])
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
workflow = StateGraph(State)
|
| 114 |
workflow.add_node("first_tool_call", first_tool_call)
|
| 115 |
+
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tool]))
|
| 116 |
+
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([schema_tool]))
|
| 117 |
+
workflow.add_node("model_get_schema", lambda s: {"messages": [model_get_schema.invoke(s["messages\])]})
|
|
|
|
| 118 |
workflow.add_node("query_gen", query_gen_node)
|
| 119 |
workflow.add_node("correct_query", model_check_query)
|
| 120 |
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
|
|
|
|
| 128 |
workflow.add_edge("correct_query", "execute_query")
|
| 129 |
workflow.add_edge("execute_query", "query_gen")
|
| 130 |
|
|
|
|
| 131 |
return workflow.compile()
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
@flask_app.route("/", methods=["GET"])
|
| 134 |
def index():
|
| 135 |
return render_template("index.html")
|
| 136 |
|
| 137 |
@flask_app.route("/upload", methods=["GET", "POST"])
|
| 138 |
def upload():
|
| 139 |
+
global abs_file_path, agent_app
|
| 140 |
try:
|
| 141 |
if request.method == "POST":
|
| 142 |
file = request.files.get("file")
|
|
|
|
| 145 |
|
| 146 |
filename = secure_filename(file.filename)
|
| 147 |
if filename.endswith('.db'):
|
| 148 |
+
save_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db")
|
| 149 |
+
file.save(save_path)
|
| 150 |
+
abs_file_path = os.path.abspath(save_path)
|
| 151 |
+
agent_app = None
|
| 152 |
+
socketio.emit("log", {"message": f"Database '{filename}' uploaded."})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
return redirect(url_for("index"))
|
| 154 |
return render_template("upload.html")
|
| 155 |
except Exception as e:
|
|
|
|
| 156 |
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
|
| 157 |
return render_template("upload.html")
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
@socketio.on("user_input")
|
| 160 |
def handle_user_input(data):
|
| 161 |
prompt = data.get("message")
|
| 162 |
if not prompt:
|
| 163 |
+
socketio.emit("log", {"message": "[ERROR]: Empty prompt."})
|
| 164 |
return
|
|
|
|
| 165 |
run_agent(prompt)
|
| 166 |
|
|
|
|
| 167 |
def run_agent(prompt):
|
| 168 |
global agent_app, abs_file_path
|
| 169 |
if not abs_file_path:
|
| 170 |
+
socketio.emit("final", {"message": "No DB uploaded."})
|
|
|
|
| 171 |
return
|
|
|
|
| 172 |
try:
|
| 173 |
if agent_app is None:
|
|
|
|
| 174 |
agent_app = create_agent_app(abs_file_path)
|
| 175 |
socketio.emit("log", {"message": "[INFO]: Agent initialized."})
|
| 176 |
|
| 177 |
query = {"messages": [("user", prompt)]}
|
| 178 |
result = agent_app.invoke(query)
|
|
|
|
| 179 |
try:
|
| 180 |
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
|
| 181 |
except Exception:
|
| 182 |
result = "Query failed or no valid answer found."
|
|
|
|
|
|
|
| 183 |
socketio.emit("final", {"message": result})
|
| 184 |
except Exception as e:
|
|
|
|
| 185 |
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
|
| 186 |
socketio.emit("final", {"message": "Generation failed."})
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
if __name__ == "__main__":
|
| 189 |
+
socketio.run(flask_app, debug=True)
|