Spaces:
Sleeping
Sleeping
✨ [New] validation code!
Browse files- yolo/tools/drawer.py +1 -1
- yolo/tools/solver.py +50 -4
- yolo/utils/bounding_box_utils.py +47 -1
yolo/tools/drawer.py
CHANGED
|
@@ -37,7 +37,7 @@ def draw_bboxes(
|
|
| 37 |
font = ImageFont.load_default(30)
|
| 38 |
|
| 39 |
for bbox in bboxes:
|
| 40 |
-
class_id, x_min, y_min, x_max, y_max = bbox
|
| 41 |
if scaled_bbox:
|
| 42 |
x_min = x_min * width
|
| 43 |
x_max = x_max * width
|
|
|
|
| 37 |
font = ImageFont.load_default(30)
|
| 38 |
|
| 39 |
for bbox in bboxes:
|
| 40 |
+
class_id, x_min, y_min, x_max, y_max, *conf = bbox
|
| 41 |
if scaled_bbox:
|
| 42 |
x_min = x_min * width
|
| 43 |
x_max = x_max * width
|
yolo/tools/solver.py
CHANGED
|
@@ -30,6 +30,12 @@ class ModelTrainer:
|
|
| 30 |
self.progress = ProgressTracker(cfg.name, save_path, cfg.use_wandb)
|
| 31 |
self.num_epochs = cfg.task.epoch
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
if getattr(train_cfg.ema, "enabled", False):
|
| 34 |
self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
|
| 35 |
else:
|
|
@@ -89,9 +95,7 @@ class ModelTrainer:
|
|
| 89 |
epoch_loss = self.train_one_epoch(dataloader)
|
| 90 |
self.progress.finish_one_epoch()
|
| 91 |
|
| 92 |
-
|
| 93 |
-
if (epoch + 1) % 5 == 0:
|
| 94 |
-
self.save_checkpoint(epoch, f"checkpoint_epoch_{epoch+1}.pth")
|
| 95 |
|
| 96 |
|
| 97 |
class ModelTester:
|
|
@@ -100,7 +104,7 @@ class ModelTester:
|
|
| 100 |
self.device = device
|
| 101 |
self.progress = ProgressTracker(cfg, save_path, cfg.use_wandb)
|
| 102 |
|
| 103 |
-
self.anchor2box = AnchorBoxConverter(cfg, device)
|
| 104 |
self.nms = cfg.task.nms
|
| 105 |
self.save_path = save_path
|
| 106 |
|
|
@@ -125,3 +129,45 @@ class ModelTester:
|
|
| 125 |
else:
|
| 126 |
raise e
|
| 127 |
dataloader.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
self.progress = ProgressTracker(cfg.name, save_path, cfg.use_wandb)
|
| 31 |
self.num_epochs = cfg.task.epoch
|
| 32 |
|
| 33 |
+
validation_dataloader = create_dataloader(cfg.task.validation.data, cfg.dataset, cfg.task.validation.task)
|
| 34 |
+
anchor2box = AnchorBoxConverter(cfg.model, cfg.image_size, device)
|
| 35 |
+
self.validator = ModelValidator(
|
| 36 |
+
cfg.task.validation, model, save_path, device, self.progress, anchor2box, validation_dataloader
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
if getattr(train_cfg.ema, "enabled", False):
|
| 40 |
self.ema = ExponentialMovingAverage(model, decay=train_cfg.ema.decay)
|
| 41 |
else:
|
|
|
|
| 95 |
epoch_loss = self.train_one_epoch(dataloader)
|
| 96 |
self.progress.finish_one_epoch()
|
| 97 |
|
| 98 |
+
self.validator.solve()
|
|
|
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
class ModelTester:
|
|
|
|
| 104 |
self.device = device
|
| 105 |
self.progress = ProgressTracker(cfg, save_path, cfg.use_wandb)
|
| 106 |
|
| 107 |
+
self.anchor2box = AnchorBoxConverter(cfg.model, cfg.image_size, device)
|
| 108 |
self.nms = cfg.task.nms
|
| 109 |
self.save_path = save_path
|
| 110 |
|
|
|
|
| 129 |
else:
|
| 130 |
raise e
|
| 131 |
dataloader.stop()
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class ModelValidator:
|
| 135 |
+
def __init__(
|
| 136 |
+
self,
|
| 137 |
+
validation_cfg: ValidationConfig,
|
| 138 |
+
model: YOLO,
|
| 139 |
+
save_path: str,
|
| 140 |
+
device,
|
| 141 |
+
progress: ProgressTracker,
|
| 142 |
+
anchor2box,
|
| 143 |
+
validation_dataloader,
|
| 144 |
+
):
|
| 145 |
+
self.model = model
|
| 146 |
+
self.device = device
|
| 147 |
+
self.progress = progress
|
| 148 |
+
self.save_path = save_path
|
| 149 |
+
|
| 150 |
+
self.anchor2box = anchor2box
|
| 151 |
+
self.nms = validation_cfg.nms
|
| 152 |
+
self.validdataloader = validation_dataloader
|
| 153 |
+
|
| 154 |
+
def solve(self):
|
| 155 |
+
# logger.info("🧪 Start Validation!")
|
| 156 |
+
self.model.eval()
|
| 157 |
+
|
| 158 |
+
iou_thresholds = torch.arange(0.5, 1.0, 0.05)
|
| 159 |
+
map_all = []
|
| 160 |
+
self.progress.start_one_epoch(len(self.validdataloader))
|
| 161 |
+
for data, targets in self.validdataloader:
|
| 162 |
+
data, targets = data.to(self.device), targets.to(self.device)
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
raw_output = self.model(data)
|
| 165 |
+
predict, _ = self.anchor2box(raw_output[0][3:], with_logits=True)
|
| 166 |
+
|
| 167 |
+
nms_out = bbox_nms(predict, self.nms)
|
| 168 |
+
for idx, predict in enumerate(nms_out):
|
| 169 |
+
map_value = calculate_map(predict, targets[idx], iou_thresholds)
|
| 170 |
+
map_all.append(map_value[0])
|
| 171 |
+
self.progress.one_batch(mapp=torch.Tensor(map_all).mean())
|
| 172 |
+
|
| 173 |
+
self.progress.finish_one_epoch()
|
yolo/utils/bounding_box_utils.py
CHANGED
|
@@ -297,6 +297,7 @@ def bbox_nms(predicts: Tensor, nms_cfg: NMSConfig):
|
|
| 297 |
cls_val, cls_idx = cls_dist.max(dim=-1, keepdim=True)
|
| 298 |
valid_mask = cls_val > nms_cfg.min_confidence
|
| 299 |
valid_cls = cls_idx[valid_mask].float()
|
|
|
|
| 300 |
valid_box = bbox[valid_mask.repeat(1, 1, 4)].view(-1, 4)
|
| 301 |
|
| 302 |
batch_idx, *_ = torch.where(valid_mask)
|
|
@@ -305,7 +306,52 @@ def bbox_nms(predicts: Tensor, nms_cfg: NMSConfig):
|
|
| 305 |
for idx in range(predicts.size(0)):
|
| 306 |
instance_idx = nms_idx[idx == batch_idx[nms_idx]]
|
| 307 |
|
| 308 |
-
predict_nms = torch.cat(
|
|
|
|
|
|
|
| 309 |
|
| 310 |
predicts_nms.append(predict_nms)
|
| 311 |
return predicts_nms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
cls_val, cls_idx = cls_dist.max(dim=-1, keepdim=True)
|
| 298 |
valid_mask = cls_val > nms_cfg.min_confidence
|
| 299 |
valid_cls = cls_idx[valid_mask].float()
|
| 300 |
+
valid_con = cls_val[valid_mask].float()
|
| 301 |
valid_box = bbox[valid_mask.repeat(1, 1, 4)].view(-1, 4)
|
| 302 |
|
| 303 |
batch_idx, *_ = torch.where(valid_mask)
|
|
|
|
| 306 |
for idx in range(predicts.size(0)):
|
| 307 |
instance_idx = nms_idx[idx == batch_idx[nms_idx]]
|
| 308 |
|
| 309 |
+
predict_nms = torch.cat(
|
| 310 |
+
[valid_cls[instance_idx][:, None], valid_con[instance_idx][:, None], valid_box[instance_idx]], dim=-1
|
| 311 |
+
)
|
| 312 |
|
| 313 |
predicts_nms.append(predict_nms)
|
| 314 |
return predicts_nms
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def calculate_map(predictions, ground_truths, iou_thresholds):
|
| 318 |
+
# TODO: Refactor this block
|
| 319 |
+
device = predictions.device
|
| 320 |
+
n_preds = predictions.size(0)
|
| 321 |
+
n_gts = (ground_truths[:, 0] != -1).sum()
|
| 322 |
+
ground_truths = ground_truths[:n_gts]
|
| 323 |
+
aps = []
|
| 324 |
+
|
| 325 |
+
ious = calculate_iou(predictions[:, 2:], ground_truths[:, 1:]) # [n_preds, n_gts]
|
| 326 |
+
|
| 327 |
+
for threshold in iou_thresholds:
|
| 328 |
+
tp = torch.zeros(n_preds, device=device)
|
| 329 |
+
fp = torch.zeros(n_preds, device=device)
|
| 330 |
+
|
| 331 |
+
max_iou, max_indices = torch.max(ious, dim=1)
|
| 332 |
+
above_threshold = max_iou >= threshold
|
| 333 |
+
matched_classes = predictions[:, 0] == ground_truths[max_indices, 0]
|
| 334 |
+
tp[above_threshold & matched_classes] = 1
|
| 335 |
+
fp[above_threshold & ~matched_classes] = 1
|
| 336 |
+
fp[max_iou < threshold] = 1
|
| 337 |
+
|
| 338 |
+
_, indices = torch.sort(predictions[:, 1], descending=True)
|
| 339 |
+
tp = tp[indices]
|
| 340 |
+
fp = fp[indices]
|
| 341 |
+
|
| 342 |
+
tp_cumsum = torch.cumsum(tp, dim=0)
|
| 343 |
+
fp_cumsum = torch.cumsum(fp, dim=0)
|
| 344 |
+
|
| 345 |
+
precision = tp_cumsum / (tp_cumsum + fp_cumsum + 1e-6)
|
| 346 |
+
recall = tp_cumsum / (n_gts + 1e-6)
|
| 347 |
+
|
| 348 |
+
recall_thresholds = torch.arange(0, 1, 0.1)
|
| 349 |
+
precision_at_recall = torch.zeros_like(recall_thresholds)
|
| 350 |
+
for i, r in enumerate(recall_thresholds):
|
| 351 |
+
precision_at_recall[i] = precision[recall >= r].max().item() if torch.any(recall >= r) else 0
|
| 352 |
+
|
| 353 |
+
ap = precision_at_recall.mean()
|
| 354 |
+
aps.append(ap)
|
| 355 |
+
|
| 356 |
+
mean_ap = torch.mean(torch.stack(aps))
|
| 357 |
+
return mean_ap, aps
|